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DESIGN OF TWO-DIMENSIONAL CHANNELS WITH PRESCRIBED VELOCITY DISTRIBUTIONS
ALONG THE CHANNEL WALLS’

By JOHND. L%MNITZ

SUMMARY

A general method of oknjn h developedfor twodimemiomzl
unbranded channels with prem-ibed veiimlia a.oa function of
arc Lmgthalong the channel walk. The method i.e &eloped
for both compressible and kcomprewibk, irrotatbna.1, non-
m’scoua@w and applies to i%?deeign of elboux, di~uaen?,noz-
zles, and so jorth. Two types of comprewible jlow are con-
sidered: the genera.?type, with i% ratw of specifi hem%y equal
to 1,4,jor a-ample, and th lineutized type, in which y is –1 .0.

Two methook oj golui?ionare w.wd: IrL part I solw-timware
obtuined by relaxation mei!hm%;in part II 8olwiwns are
obtuined by a Green’sjunction.

Five numerical exampla are given in part I including three
elbow oki.gns with the gameprewibed velociiy w ajunction oj
arc length along the chunn.el waL?abui wnlh incompressible,
linearized compremible, and comprewibk @w. It h con-
cluded that ij a nonviscous gw wi% arlitxary v (14, jor ez-
ampk) were to jfow throwgha chunnel dmignedjor linearized
compressiblejlow (Y= —1.0], the rewi?tingvelociiy dim!nk%n
along the clwnnel wai?lswould be nearly the velocity dA’ribuiion
prescribedjor the linearized comprewibk~.

One numericul ample is pre.wntedin part II for an acceler-
ating elbow with linearized compremibk @w, and the time
requiredjor the 8ohA0n by a Qreen’8junction in part 11 wm
considerably I?ea8than the time requixd for the same 80.h$iOn

by relaxation methodi in part I.

INTRODUCI’ION

There me two general types of theoretical problem in
twodimensional fluid motion: (1) the direct problem, in
which the distribution of velocity is determined for a pre-
scribed shope of boundary, and (2) the inverse problem, in
which the shape of boundary is determined for a prescribed
distribution of velocity along the boundsxy. The direct
problem is an ardaysis problem; the inverse problem is a
design problem. This report is concerned with the inverse,
or design, problem for twodimensional, irrotatiomd flow in
unbranched channels with prescribed velocities as a function
of arc length along the charnel walls.

The design of channels with prescribed velociti~ is impor-
tant because: (1) Boundary-layer separation losses can be
avoided by prescribed velocities that do not decelerate rap-
idly enough to cause separation, (2) shock losses in eom-

preasible flow and cavitation in incompressible flow can be
avoided by preacrib~- velocities that do not exceed certain
mtium values dictated by these phenomena, and (3) for
compressible flow the desired flow rate can be assured-by
prescribed velocities that do not result in “choke flow”
conditions.

Several methods of channel design have been developed
for particular application (refs. 1 and 2, for example). In
reference 1 a design method is developed for accelerating
elbows in which the veloci@ increases monotonically along
the channel walls. The method is developed for incompress-
ible and linearized (y=— 1.0) compressible flow. The veloc-
ity distribution along the channel mills is not arbitrary and
the design method appliea to elbows only. In reference 2
a design method is developed for straight, symmetrical chan-
nels with contracting or expanding walls. The method is
developed for incompressible flow and the velocities are
prescribd not as a function of arc length along the channel
walls but as a function of circle angle in the transformed
circle plane. A more general design is suggested in reference3,
but no attempt is made to develop and apply the method.

In the present report a general method of design is devel-
oped for two-dimensional, unbranched channek with pre-
scribed velocities as a function of arc length along the channel
walls. The method is developed for both compressible and
inc.mhpreasible,irrotational, nonviscous flow and applies to
the design of elbows, diffusers, nozzles, and so forth. Two
types of compressible flow are considered: the general type
with arbitrary value of -Y(1.4, for example) and the linearized
type with Y equal to —1.0. In general, if the prescribed
velocity along one channel-wall differs from that along the
other, the channel turns so that the downstream flow direc-
tion is diflerent from the upstream direction. This change
in flow direction ~ot be arbitrarily chosen but depends on
the prescribed veloclty distribution along the walls. Equa- ~
tions are developed for computing this change in flow direc-
tion for an arbitrmy prescribed veloci~ distribution with
incompressible or linearized compressible flow. Two meth-
ods of solution have been developed for the design method
and are presented in separate parts of this keport. In
part I solutions are obtained by relaxation methods (ref. 4).
This method of solution results in complete information
concerning the distribution of flow conditions throughout the
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channel and, in addition, can be used to obtain nonliuear
solutions for compressible flow with arbitrary values of y.
In part H solutions are obtained by means of a Green’s
function. This method of solution is limited im incom-
pressible and linearized (-y= —1.0) compressible flow, but
the method is more rapid than relaxation methods, provided
information within the channel is not required.

The dmign method reported herein was developed at the
NACA Lewis laboratory during 1950 and is part of a doctoral
thesis conducted with the advice of Professor Ascher H.
Shapiro of the Massachusetts Institute of Technology.

PART I

GENERAL THEORY AND SOLUTION BY
RELAXATION METHODS

A general method of design is developed for. two-
dimimsional,unbranched channelswithprescribed velocities as
functions of arc length along the channel walls. The method
is developed for both incompressible and compressible, irro-
tational, nonviscous flow. Two types of compressible flow
are considered: the general type with arbitrary value for the
ratio of specific heats -y (1.4, for emmple), and the linearized
type in which -r is equal tQ –1-0. The solutionEin part I
of this report are ~btained by relaxation methods and give
complete information concerning the flow throughout the
channel. I?ive numerical examples are given, including three
elbow designs with the same prescribed velocity as a function
of arc length along the channel walls but with incompressible,
linearized compressible, and compressible flow. -

THEORY OF DESIGN METHOD

The design method is developed for two-dime&ional chan--
nels with prescribed velocities along the channel walls. The
prescribed velocity is arbitrary except that stagnation points
cmmot be prescribed. This exception -limits the design
method to unbranched channels.

PRELIMINARY CONSIDERATIONS

Assumptions.-The fluid is assumed to .be nonvisco& and
either compressible or incompressible. The flow is assumed
to be two dimensional and irrotational.

The assumption of twodimensional, nonviscous, irrota-
tional motion limits the design method in practice to channels
with thin (negligible) boundary layen, such as -t near the
entrance to the chbnnel or after a rapid acceleration of the
flow through a contraction in the channel. Even if the

~ boundary layer is thin, the design method is limited to (and
iinds its most useful application for) prescribed wwlocity
distributions that, from boundary-layer theory, do not decel-

. crate fast enough to result in separation of the boundmy
layer, which separation alters the “effective” shape of the
channel and completely changes the character of the flow.

In some channels with fully developed turbulent boundary
layers, the design method might be expected to yield results
that are satisfactory, although approximate, because for this

type of flow the rotational motion occurs primarily in regions
close @ the channel walls. In channel walls with thick or
fully developed lamimw boundary layers the design mothocl
cannot be used, because not ordy is the rotation of the flow
important in most of the channel but, if the channel bends,
important secondary flows develop that are not considered
by the two-dimensional design method.

Flow field,-The flow field of the two-dimensional chan-
nel is considered to lie in the physical ~-plahe where z and
y are Cartesian coordinate expressed aa ratios of a charac-
teristic length equal to the constant charnel width down-
stream at M.uity. (AUsymbols are deilned in appendix A,)

At each point in the channel (fig. 1) the velocity vector haa
a magnitude Q and a dire&ion 0 where Q is the fluid velocity
expressed as the ratio of a characteristic velocity equal to the
constant channel velocity downstream at infinity. J?or con-
venience, the veloci~ Q is related to a velocity q by

g= Q!b (1)

where q is the velocity expressed as a ratio of the stagnation
speed of sound and the subscript d refers to conditions down-
stream at *ty.

The flow direction 9at each point in the channel is measured
counterclockwise from the positive x-axis. I’rom figure 1

(l.x=&? CcH e

*’
dy=ds Sin 9

where ok is a differential distance in
is, along a streamline.

Y

ds

-A

0

dx

(2a)

(2b)

the direction of Q, that
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Stream fgnotion and veloci~ potential.-If the condition
of continuity is satisfied, a stream function + can be defined
such that

d+=PQ dn (3)

where p is the fluid density exprmed as the ratio of a charac-
teristic density equal to the stagnation density and where dn
is a differential distance measured normal to the direction
of Q, that is, normal to a streamline. Along a streamline,
dn is zero so that from equation (3) the stream function ~-
is constant.,

If the condition of irrotational fluid motion is satisfied, a
velocity potential p can be defined such that

dq=Q ds (4)

Nor+ to a streamline, d-sis zero so that from equation (4)
the velocity potential p is constant. Thus lines of constant
p and + are orthogonal in the physical xy-plane.

Outline of method,+301utione of two-dimensional flow
depend on known conditions imposed along the boundaries
of the problem. In the ‘inverse problem of channel design,
the geometry of the channel walls in the physical ~-plane is
unknown. This unknown geometry apparently precludes
the possibility of solving the problem in the physical plane
and necessitates the use of some new set of coordinates, that
is, a transformed plane, in which tQ solve the problem.
These new coordinates must be such that the geometic
boundaries along which the velocities are prescribed are
IuIown in the transformed plane. It is also desirable, for
mathematical simplicity, that the coordinate system in the
transformed plane be orthogonal in the physical plane. A
set of coordinates that satisfiestheserequirements is provided
by p and #, which are orthogonal in the physical ay-plane and
for which the geometric boundaries are lmown constant
values of + in the transformed p+plane.. The distribution of
velocity as a function of p along these boundaries of constant
~ is known because, if

Q=Q(~)

is prescribed, equation (4) integrates to give

9=$4)
from which equations,

Q=Q(w)

The ~echniqueof the proposed method of channel design is
therefore to obtain a differential equation for the distribution
of velocity in the @-plane. The velocity distribution ob-
tminedfrom the solution of this equation is then used to obtain
the distribution of flow direction, from which distribution the
channel walls in the physical W-plane are obtained directly.
The dfierential equation for the distribution of velocity in
the ~-plane is nonlinear (for compressible flow withy other
than —1.0) and is solved by numerical methods (relaxation
methods).

DIFFERENTIAL EQUATION FOR DISTIWEIJTION OF VELOCITY IN
TRANSFORMED +PLANE

The dtierential equation for the distibutich of velocity in
the transformed d-plane is obtained from the equations for

continuity and irrotational fluid motion expressed in terms of
the transformed coordinates p and #.

Continui@.-The continui~ equation ex@x.sed in terms
of P and #becomes (appendix B):

(; a lOg. p+alOg. Q ao

P ap ap )+@=o (5)

Irrotational fluid motion,-The equation for irretational
fluid motion, expressed in t&ms of q and ~, becomes (ap-
pendix B):

a 10g. Q ae
P ——.

a+ ap .0
(6)

&erential equation for distrib&ion of velooi@.-The
second+rder partial differential equation for the distribution
of log. Q in the transformed @-plane is obtained by differenti-
ating equations (5) and (6) with respect to P and ~, reepeck

a’o
ive.ly,and combining to eliminate—.

aqa+ ‘w’ “
r

Equation (7), together with a relation between p, Q, and ~dj
determines the distribution of log, Qin the +plane for com-
pressible flow with a given value of g~and for arbitrarily pre-
scribed variations in log, Qalong the boundaries of constant #.

Density.-The density p is related to the velocity q by
(ref. 5, p. 26, for example)

, .- 1.—

( = !I=J-lp= 1— z

which, from equation (1), becomes

(Sa)

(Sb)

Equation (Sb) relates the density p to the velocity Q for a
given vdu8 of qd.

Incompressible flow.-For incompressible flow p is con-
stant and equal to 1.0 so that equation (7) becomes

(9)

Equation (9) determines the distribution of log, Q in the
@-plane for incompressible flow.

CHANNEL-WALL GEOMETRY

After equation (7) or (9) has been solved to obtain the
distribution of log, Q in the transformed d-plane (for the
arbitrary specified variations in lo~ Q with q along the
boundaries of constant +), the geometry of the channel
walls in the physical ~-plane can be determined from the
resulting distibu~ofi of flow direction 19.
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mow direction O.—The distribution of flow direction 8
along a streamline (c&stant #) is obtained from equa-
tion (6), which integrates to give

(lOa)

where the subscript # indicates that the integration is taken
along a line of”constant+ and where the constant of integrat-
ion is selected to give a known v-blueof 0 at one value of w
along each streamline. The. integrand in equation (lOa) is
obtained horn the distribution of- lo~ Q, which is-known
from the solution of equation (7) or (9).

The<.distribution of flow direction 0 along a velocity-
potentml line (constant p) is obtained from equation (5),
which integrates to give

H1 a lOg. p+
e=— –

a kg’ Q @
ap ap ) (lob)

VP

where the subscript P indicates that the integration is taken
rdong a line of constant w and where the constant of integra-
tion is selected to give a known value of 8 at one value of

, + along each velocity-potential line. As for equation (lOa),
the integrand in equation (lOb) @ lmown from the distribu-
tion of log, Q obtained from the solution of equation (7)
or (9).

Channel-wall coordinates,-The variation in x along a
line of constant # in the ~-plane is given by

ax dx O%
()~= x& +

which, combined with equations (2a) and (4),” integrates to
give

z=
J

~dv ‘ (ha)

Likewise,
~Q

x=— J“;+W (llb)

(llC)

(lld)

where the constants of integration are seleckd to give lmown
values of z or y at one value of P along each streamline or at
one value of + along each velocity-potential line. Equations
(ha) to (lld) determine the distribution of z and y in the
transformed +plane or, which is the same thing, the shape
of the streamlines and velocity-potential lines in the physical
W-plane. In particular, equations (ha) and (llc) when in-
tegrated along the boundariw of constant + in the @-plane
determine the shape of the channel walls.

TLU’R.@angle.-k general, if the prescribed veloci~ dis-
tribution along one channel vi-alldiffers from the distribution
along the other wall, the channel deflects an amount AO,
which is the difference in flow direction far downstream and
far upstream of the region in which the prwcribed velooity

distribution varies. In pmt II it is showm that for incom
preasible flow the turning angle AOis given by

A19=0~-OU

‘:f:m’[(al::Q)l.o-(al::Q)Jd’’12
where the subsoript u refers to conditions upstream at infinit~

and where the subsoripta O and 1.0 refer to the channe
boundaries along which @ equals O and 1.0, respectively. d
similpr equation will be given later for the we of linearize
compressible flow.

LINEARIZED COMPRESSIBLE FLOW

The nonl@ear differential equation (7) for the distribution
of velocity in the @-plane with compressible flow b~comei
linear and is considerably simplified if a linenr variation ir
pressure with speciiic volume (l/p) is assumed. This linoal
relation between pressure and specific volume was first sug-
gested by Chaplygin (ref. 6) in order to linearize the difFw.
ential equations for two-dimensional compressible flow k
the hodograph plane.

Density.-If a linear variation in pressure with specific
volume is assumed, the density p* is related to the voloci~
q? by (appendix C) ‘

P*= (1 +q*2) -1/9 (13;
where

p*=klp (138:
and . g*=k2q (13b,

where the constants kl and kl have been determined so thal
valuea of p given by equation (13) equal the valu~ of ~
given by equation (8a) for any two mlected valuea of g (des-
ignated by q=and q,). Thus,

and

(14n:

J()Pa ‘_~—
k,=; Pb

()

(14b:
PaL?. g1- —
Pbqb

where paand pbare determined by equation (8a) for the SC+
lected values of g=and qt,,respectively. A discussion of th~
selection of q= and gb is given in appendix 0. It will bc
noted that, if y is equal to —1.0, equation (8a) has the sam~
form a9 equation (13).

Stream function and velooity potential,-For the cam o.
linearized compressible flow it is convenient to deiine th{
stream fiction +* and the velocity potential 9* by

@/*= p*q* & (15:
re d..

, &p”+ h (16:
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Continui~.-The continuity equation expressed in terms
of P* and ** becomes (appendix D)

b log, UJ
~p. +$=0 . (17)

where

u= L7* ~
1+’@qp

(18)

or, conversely,
2U

q’=-
(19)\

Irrotational fluid motion,-The equation for @rotational
fluid motion, expressed in terms of 9* and +*, becomes
(appendix D)

(20)

Differential equation for distribution of log,u,—’lle partial
differential equation for the distribution of log, u in the
q*~*-plane is obtained by differentiating equations (17)
and (20) with respect to q * and **, rwp~tivdyj ~d cOm-

bining to eliminate&. Thus

32log. U+b’ lo% U=o
aP*z a+~ (21)

Equation (21) determines the distribution of log, u in the
p*i*-plane for linearized compressible flow with a given
value of gd and for arbitrarily prescribed variations in
log, Q, related to log. u by’ equations (l), (13b), and (18),
along tha boundaries of constant **. Equation (21) is
linear and is, like equation (9) for the cam of incompressible
flow, the equation of Laplace. Thus an incompressible
flow~-solutionfor the distribution of lo% Q in the @plane is
also a linearized compressible flow-solution for the distribution
of log~ u in the P*+*-plane. The transformation from the
p+pkine is diflerent, however, from the transformation from
the q*~*-plane so that diilerent channel shapes result in the
~-plane.

Flow direotion O,~The distribution of flow direction O
along a streamline (constant Y*) is obtained from equa-
tion (20), which integrates to give

(22a)

Likewise, the distribution of flow direction o along a veloci@--
potentitd line (constant w*) is obtained from equa-
tion (17), which integraka to give

(22b)

Equations (22a) and (22b) for linearized mmprwible flow
correspond to, and are used in the same manner as, equa-
tions (lO&) and (lOb) for the usual type of compressible or
incompressible flow.

Channel-wall coordinates,-The variation in z along a
line of constant #* in the P*+*-plane is given by

%=($%9,*-
which combined with equations (2a) and (16) integrates
b give

Likewise,
J Cost)x= T &o*

$“ !l

J sin e
Y- - d~*$“ !?

(23a)

(23b)

(23c)

(23d)

Equations (23a) to (23d) determine the dihbution of a and
yin the transformed p***-plane or, which is the same thing,
the shape of the streamline and veloci&potentiaI lines in the
physical ny-plane. In particular, equations (23a) and (23c),

‘ when integrated along the boundari= of constant $* in the
p*@*-plme, determine the shape of the channel walls.
Equations (23a) to (23d) for linearized compressible flow
correspond to, and are used in the same manner as, equa-
tions (ha) to (l Id) for the usual type of c.mhpressibleor
incompressible flow.

= angle.-ti part II it is shown that for linearized
compressible flow the turning angle, or di-6erence in flow
direction far downstream and far upstream of the region in
which the pr=cribed vdoci~ distribution variea along the .
channel walls, is given by -

“=~f:M”*[(a~$”)A,*-(%)~’24)
where A4* is the value of Y* along the left boundary (channel
wall) when faced in the &ration of flow if the value of #*
along the right boundary is zero, and where the subscript
A#* referS to the boundary along which #* is equal to A+*.

NUMERICAL PROCEDURE

The channel design method in part I of this report was
‘developed for three types of fluid flow: (1) compressible,
(2) incompressible, and (3) linearized compressible. Al-
though the numerical procedures of the dt@jn method are
similar for each type of fluid, the procedures M& in detail
and are therefore considered separately in this section.

COMPRESSIBLE PLOW

The numerical procedure for channel design with com-
pressible flow (7= 1.4, for example) is as fo~ows: ‘.

(1) The velocity is speciikxl as a function of arc length
along that portion of the channel walls over which the ve-
locity vari-

‘ q=g(8)
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or qdis specified and
Q=Q(s) (25)

where .s is arbitmrily equal to zero at that point along one
channel wall where the velocity fit be@s to vary.

(2) The channel-wall boundaries of the flow field in the
transformed @-plane are straight, parallel lines of constant
# extending indefinitely far UpStU31UUand downstream
between P equals & w, where p is arbitrarily equal to zero
at that point on the channel wall at whichs is equal to zero.
The value of # along the right channel wall when faced in the
direction of flow (direction of positive p) is arbitrarily set
equal to zero in which case the value of # along the ‘left
channel wall (Al) is obtained by integrating equation (3)
acro~ the channel at a position far downstream where flow
conditions are uniform

A#=~ (26)

(3) The distribution of log. Q as a function of p along the
boundaries in the q@plane is obtained by integrating equa-
tion (4) between limits so that

r(o= , Qo%=q(s) (27)
.

which together with equation (25) gives the distribution of
log, Q along the boundaries in the +plane

lo% Q=f (p) (28)

The integration indicated by equation (27) is carried out
numerically for arbitrary distributions of Q as a function ofs.

(4) If the velocities prescribed along one channel wall
diiler from those along the other wall, the channel will, in
general, turn the flow. This turning angle caimot be de-
termined exactly for compressible flow until the channel
design is completed. ‘ However, it will be shown that this
turning angle is only slightly greater than that resulting for
linearized compressible flow with the same prwcribed
velocity and with a suitable selection for q=and qbin equa-
tions (14a) and (14b). This lat&r turning angle for linearized
compressible flow -is given by equation (24), which can be
integrated numeriealy for the arbitrary disdbution of
log6 u=f (P) corresponding to equation (28).

(5) In order to solve equation (7) for the distribution of
log Q in the p$plane, it is convenient to eliminate thg
density terms &m equation (7) by means of equation (8b).
Thus, equation (7) becorn&

(29)

where

B=l.o

and

Equation (29) is nonlinear, and it can be solved by relaxation
methods (refs. 4 and 7, for example). A grid of equally
spaced points, at each of which the value of log, Q is to be
determined, is placed in the flow field between the chrmnel-
wall boundaries. ‘J’he grid is astended upstream rmd clown-
stream sufficiently far- so that constant values of log, Q are
obtained across ‘the channel by the relaxation methods, In
the numerical examples to be presented six or eight grid
spaces were used ,across the channel. In ,example III the
number of grid spacea was reduced from eight to four with
negligible effect on the resulting channel design. The values
of log. Q at each grid point were relaxed to five significant
figures. If the same velocity distribution is prescribed along
both walls, the channel is symmetrical so that the velocity
distribution in only one half of the channel need be deter-
mined by relaxation methods. .

(6) After log, Q has been determined at each grid point in
the p+plane, the distribution of o is determined by equa-
tions (lOa) and (lOb), which are integrated numerically. The
constants of integration in equations (lOa) and (lOb) are
determined to give a specified value of e at one point in the
channel (far upstream, for example). The integrands in
equations (lOa) and (lOb) are determined by numerical
methods (tablea I to TCCf,ref. 4, for example) from the known
valuea of p and log. Q at each of the grid points. If it is
desired to know the flow direction along the channel-walls
only, equation (lOa) can be solved along the channel-wall
boundaries $=0 and +A$ only. If it is desired to know
o everywhere in the channel, the recommended procedure is to
determine the variation in o along the mean strmmline
(+= (A*)/2) by equation (lOa) and to ~etemnine the
variation in o along each velocity-pqtential line from the
previously determined values on the mean streamline by
equation (lOb).

(7) After the distributions of log, Q and o are known in the
@plane, the shapes of the streamline and the velocity-
potential lines in the physical ~-plane or, which is the same
thing, the distributions of z and y in the transformed @-
plane are determined by the numerical integration of equa-
tions (.lla) to (lId). The constants of integration in these
equations are detenni.ucd so that speciiied valuea of x and y
ocour at one point in the flow field. The recommended
pticedure is to determine the variation “mx and y along the
mean streamline by equations (1la) and (1lc) and to deter-
mine the variation in z ‘@d y along each velocity-potential
line for the previously determined valuea on the menn
streamline by equations (llb) and (1Id). If it is dcaired to
mow the z and y coordinated for the channel walls only,
equations (1la) and (1lc) can be solved along the chwmel-
Wti boundaries $=0 and #=A@ Ody.



DESIGN OF TWO-DlM13NSIONAL CHANNELS WITH PRESCRIBED VELOCITY DISTRl13UTIONS ALONG CHANN31L WALLS 159

IfiCOMPFtZSSfBLE PLOW

The numerical procedure for channel design with incom-
pressible flow (P= 1) is similar to that just outlined for
compressible flow, but with the following differences:

(1) The velocity is speciikd as a function of arc length by
equation (25) alone.

(2) The value of # along the left channel wall (At) is equal
to 1.0 instead of the value given by equation (26).

(3) The distribution of log. Q as a function of q along the
channel-wall boundmies in the ~-plane is the same as that
obtained from equations (25) and (27) and given by equa-
tion (28).

(4) The turning angle AO of the channel is &en by
equation (12).

(6) The didribution of log, Q in the +plane is obtained
from the solution of equation (9) by relaxation methods.

(6) After log. Q has been determined at each grid pornt
between the channel-wall boundaries in the wplan?j the
distribution of o is determined by equations (lOa) and (lOb)
m indicated previously for compressible flow, but with p
equal to unity.

(7) After the distributions of log. Q and o are Jmown in the
@-plane, the shapes of the streandineaand velocity-potential
lines in the physical xy-plane are determined by equs
tions (1lu) to (lld) as indicated previously for compressible
flow, but with p equal b unity.

LINEABfZZDCOMPR~LE PLOW

The numerical procedure for channel design with line-
arized compressible flow (y= —1.0) is similar to that pre-
viously outlined for compressible flow, but with the followiqg
diilerences:

(1) The velocity q is speciikd as a function of arc length
along the channel walls by q(s) or by qd and equation (25).
For each prescribed velocity, there are an inflnita number of
linemized com’presaible flow solutions depending on the
selected valuea of q= and g~ in equations (14a) and (14b).
However, forvaluesof gaand q, within th6rangeof gpreacribed
along the channel walls (and therefore everywhere ‘ii the
channel), the solutions, that is, channel shapea, probably
differ only in small detail. The best solution is that most
nearly like the nonlinear compressible solution with arbitrary
value of y (1.4, for example). In the numericfd examples of
thisreport it is shown that, if q=and q~are equal to the maxi-
mum and minimum values of q, a good solution results, at
least if the ratio of these prescribed velocities is not too large
(2:1 in the numerical examplea). On the other hand, if con-
tinuity is to be satiafied for a gas with the correct value of -r
(1.4, for example) upstream and downstream of the region
of the channel in which the prescribed velocities vary, then
g=and q~must equal qu and q~.

After Q=and g~have been selected, the velocity distribution
q(s) is expreaaedas g*(s) by equation (13b) where kz is given
by equation (14b) so that

q“=g”(s) (30)

The velocity Q* is then expressed aa u by equation (18) so
that

U=u(s) (31)

In the particular case where the selected value of qais equal
to g~,the value of k~is given by equation (@b) in appendix C,
where the sig@cance of this particular case is also discussed.

(2) The solution is obtained in the transformed p“#*-
plane whore p“ and +“ are defined by equations (16) and (15),
respectively. If the value of +“ along the right ohannel wall
when faced in the direction of g* is zero, the value of #* along
the left wall (AX*) is obtained by integrating equation (15)
across the chamd at a position far downstream where flow
conditions are uniform

li+*=Qd*~d* (32)

(3) The distribution of log, u as a function of q“ along the
channel-wall boundaries in the W*#*-plane is obtained by
integrating equation (16) between limits similar to those
discussed previously for compressible flow so that

J9*=~aq“0%=p“(s) (33)

which together with equation (31) determines the distribu-
tion of log, u along the ohannel-wall boundaries in the P*l*-
plane

log, U=j(q”) (34)

(4) The turning angle AOof the-channel is given by equa-
tion (24).

(5) The distribution of log. u in the p*#*-plane is obtained
from the solution of equation (21) by relaxation methods.

(6) After log. u has been determined at each grid point
between the channel-wall boundaries h the q*~*-plane, the
distribution of o is determined by equations (22a) and (22b)
in a mamar similar to that outlined previously for compress-
ible flow. “

(7) After the distributions of log, u and o are lmown in the
p*#*-plme, the shapes of the streamlines and the velocity-
potential lines in the physical ay-plane are determined by
equations (23a) to (23d) in a manner similar to that outlined
previously for compressible flow. The velocities q“ in equa-
tions (23) are obtained from the known values of u, and the
densities p* are given by equation (13). ,

NUMERICAL EXAMPLES

The cliannel design method has been applied in part I to
the five exampleslisted below:

Elwnplm Typ2 of clmnnol ‘rype Offlm “

I Redwfne sectkm IncOm~

II COnverglngsectfon Inmmpresdble

III Ellmw Incompres3fble

r? Eliww Lfnearfxedcnmprmfbb

v ElbJw Comp_ble (Y-1A)

EXAMPLE 1

The first numerical example is the design of a reducing
section-m a straight channel such that the upstream velooity
is half the downstream velocity. The solution is for incom-
prwaible flow.
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Prescribed velocity distribution.-The prescribed velocity
as a function of arc length s along both channel walls is
giV811by ‘

Q=O.5 (s< o)
)

‘(35)

Q=l.o (s<3.0) )

The prescribed veloci~ given by equation (35) ,is plotted in
figure 2.

Equation (35) together with equation (27) readts in

p=o.5s , {8< o)
)

83 84
P=;+18 ~08——— (0<s<3.0)

)

P= —0.75+8 (8<3.0) )

(36)

From equations (35) and (36), log, Qis a lmown function of p,
which function is plotted in figure 3.

Itesults,-The results of example I are presented in
6gures4 to 7.

In figure 4, lines of constant velocity Q and flow direction
o are plotted in the transformed p+plane. The flow direc-
tion o is constant and equal to zero along the menn streamline
(+=0.5), indicating that the center line of the channel is
straight. The maximum absoluh values of 0occur along the
channel walls. The solution is smnmetrical about the mean
streamline. The lima of constant Q and 6’are orthogonal.
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In figure 5, lines of constant z and y are plotted on the
trarmformed@-plane. Along the mean stmmnline (i=O.6)
the value of y ia constant and equal to zero indicating, as
before, that the center line of the channel is straight. The
lines of constant z and y are orthogonal, and the system of
curves forma a square network. The solution is symmet-
rical.

3~l~~R&lA

In figure 6; lines of constant P and + (velocity potential
and streamlines, respectively) are plotted in the physical xy-
plane. The shape of the channd walk is that required to
result in the prescribed velocity distribution given by equa-
tion (35) and plotted in figure 2. The downstream channel
width is 1.0 by definition. The upstream channel width is
2.o in order that the upstream velocity be half the down-
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stmmmvelocity. As usual, the streamlinesand velocity po-
tantial lima are orthogomd and, with equal increments of
P and #, form a square network for incompr-ible flow.

In figure 7, lines of constant Q and o are plotted in the
physical zy-plane. The lines of constant Qand o are orthog-
onal.

EXAMPLEII

The second numerical emmple is the de&n of a converging
section that funnels the fluid from an iniinite expanse into a

straight channel of unit width. Far upstmnm the channel
walls are straight and converge at a 90° angle. The solu-
tion is for incompressible flow.

Prescribed velocity distribution.-The prescribed velocity
aa a function of arc lengths along both channel walls is given
by \

Q=l.o (s24) }

The prescribed velocity given by equation (37) is plotted in
figure 8.

Equation (37) together with equation (27) results in

18’ 17383
()

——— -+P=; s+% Z—-3 2T 2 3
I

()
1 2 84

5 # z

From equations (37) and (38), log, Q is
p, which function is plotted in figure 9.

(8 ~ O)

(0<8<4)

(8>4)

(38)

a known function of
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Eesults,-The results of example II are presented in
figurca 10 to 12. .

In figure 10, lines of constant velocity Q and flow direction
0 are plotted in the transformed p+plane. The flow-direc-
tion Ois constant and equal to zero along the mean stream-

~line (#=0.5), indicating that the center line of the channel
is straight. The solution is symmetrical about the mean
streamline. As ~orexample I, the lima of constknt Q and 0
are orthogonal.

In figure 11, lima of constant w and # are plotted in the
physical ~-plane. The shape of the channel walls is that

‘+

required to result in the prescribed velociiy distribution
given by equation (37) and plotted in figure 8. ‘As usual, the
streamlines and velocitg=potential lines are orthogonal and,
for incompressible flow with equal increments of q and #,
form a square network.

In figure 12, lines of constant Q and o are plotted in the
physical xy-plane. The lines of constant Q and o are orthog-
onal.

EXAMPLZm

The third numerical amunpleis the design of an elbow for
which the upstream velocity is half the downstream velocity.
The prescribed velocities are such that no deceleration occurs
anywhere along the channel walls. The solution is for in-
Compr-ible floti.

Prescribed velocity distribution,-Along both walls up-
stream of the ilbow the velocity Q is eq~al to 0.5, and along
both mills downstream of the elbow Q is equal to 1.0. The
transition from Q equsls 0.5 to 1.0 along both walls of the
elbow will be the prescribed veloci@ distribution as a func-
tion of arc length given by equation (35) for example I and
plotted in @e 2. In terms of log. Q as a function of q, this
prescribed velocity distribution is given by equation (36)
and is plotted in figure 3. Although this velocity distribu-
tion is the same for both walls, the distribution on the outer
wall (wall with larger radii of curvature) is shifted in the
positive q direction an amount equal to 2.25 relative to the
distribution on the inner wall. Thus, a velocity difference
exists on the two walls’ at equal value9 of p, as ahown in
figure 13. The greater this difference in velocity and the
greater the range in P over which-velocity diflerencea exist,
the greater is the elbow turning angle. For the prescribed
velocity distribution given in figure 13, the elbow turning
angle given by equation (12) waa 89.37° compared with a
value of 89.36° obtained from the rekation solution.

Itesults.-The reaulta of example IIt are presented in
figures 14 im 16 and in tables I and IL (The numerical.
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results for &amples III, IV, and ~ are tabulated in tablea
I to Tl to enable a detailed comparison of the three elbow
dcaigns with the same prescribed velocity Q distribution aa
a function of arc length but with incampres.die (exampl~
III), linearized compressible (example ~, and compressible
(example V_)flow.)
. k figure 14, lines of constant Q and o are plotted in the

@-plane. The flow direction 8 variea along the mean
streamline (*= 0.5) ,.indicating that the channel is curved.
The solution is unsymmetrical. & for examples I and II,
the lines of constant Q and o are orthogonal.

In figure 15, lines of constant p and x are plotted in the
physical zy-plane. The shape of the channel walls is that
required to result in the prwxibed velocity distribution
given by equations (35) and (36) and plotted in figures 2
and 13. The upstream channel width is twice ‘the down-
stream width in order that the upstieam velocity be half
the downstream velocity. It is iriter~ting to note that,
before curving in the direction of the elbow turning angle,
the inner wall first curves in the opposite direction. This
behavior of the inner-wall geometry is necessary in order to

maintain the prescribed constant velocity along the outer
wall where the velocity would othemise decelerate because
of the neceamry curvature in the direction of elbow turn-
ing. This feature of the elbow geometry will also be noted in
exampleaIV and V. As usual, the stremnlinesand velocity-
potential lims are orthogonal and, for equal increments of
p and #, form a square network.

In @ure 16, lines of constant Q and o are plottid in the
physical ~-plane. The lines of constant Q and o are
orthogonal

EXAMPLElV

The f&rth n’merical example is the design of an elbow
with the same prescribed veloci@ Q, as a function of arc
length, used in example III but for linearized comprweible
flow (7=–1.0).

Presonbed veloci~ dis@ibution,-The prescribed velocity
distribution Q is the same as that for example III and with
qd equal to 0.80176. The variation in Q with s along one
channel wall is plotted in figure 2. The values of g. and g~
in equations (14a) and (14b) are equal to qWand g~, oi
0.40088 and 0.80176, respectively. For these vrduea of q.
and qb and for the prescribed velocity distribution with
linearized compressible flow, the elbow turning angle given
by equation (24) wss 104.08° compared with a value of
104.07° obtained from the relaxation solution and a value of
89.36° obtained for incompressible flow (example III).

Itesults,-The results of example IV me preaentod in
iigurcs 17 to 19 and in tables III and IV.

In figure 17, lines of constant g and o are plotted in the
transformed P*#*-plane. The solution is unsymnmtrical
and the lima of constant g and Oare orthogonal.

In ligure 18, lines of constant P*/A#* and #*/A~*. me
plotted jn the physical zy-plane (where the constant A**
is given by equation (32) and is equal to 0.73782 for g~
equal to 0.80176). The shape of the channel walls is that
required to result in the prescribed ve]ocity distribution used
in mample III but with linearized compressible flow and
for qa equal to 0.80176. From continuity considerations
the upstream channel width is 1.5385 times the downetreom
width. As in example III, the inner wall of the elbow firet
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maurm 17,–Llnesofcon6tont VE1OCUYgandtlow~tfond In bndonndp”#”-plano forexarnple IV. Lfnearkd cumpremlblefl~ presuked velOOityiUfmmtlon4farolengthfdongckfolud
walk mrne asfor -pie ~ (ilg. ‘2)ad with w eqnal to c@3176.

turns in the opposite direction to the elbow turning angle.
As usual, the strermdines and velocity-potential lima are
orthogonal.

In figure 19, lines of constant q and o are plotted in the
physical xy-plane. The lines of constant q and 8 are not, in
genernl, orthogonal.

EXAMPLEV

The ilfth numerical example is the design of an elbow with
the same prescribed velocity Q, as a function of arc length,
used in emunples III and IV but for compressible flow
(7=1.4).

Prescribed velocity distribution.-The prescribed velocity
distribution Q is the same as that for tmznples Ill and IV
but with gd equal to 0.79927. The variation in Q with s
along one channel wall is plotted in figure 2.

Results,-The results of example V are presented in
figures 20 and 21 and in tables V and VI.

In figure 20, lines of constant KP/A#and 4/Ax are plotted in
the physical W-plane (where the constant A* is given by
equation (26) and is equal to 0.71054 for q~equal to 0.79927).
The shape of the channel walls is that required to result in
the prescribed velocity distribution used in examp16sIII and
IV but with compressible flow (7=1.4) and for qii equal to
0.79927. The upstream channel width is 1.5412 times the
downstream width, and the turnhig angle is 105.31” com-
pared with 104.07° for Iineazized compressible flow (example
IV) and 89.36° for incompressible flow (example 131). The
streamlines and veloci~-potential lines are orthogonal.

The shape of the elbow for compressible flow (example V,
fig. 20) is nearly the same as the shape of the elbow for
linearized compressible flow (example IVj fig. 18). There-
fore, in figure 21 the contours of the walls for both examples
are compared. The difference in contours is very small and
it is concluded that, if a nonviscous gas with arbitrary Y (1.4,
for example) were to flow through a channel designed for
linearized compressible flow (Y= – 1.0), the resulting velocity
distribution along the channel walls would be nearly the
veloci~ distribution prescribed for the linearized compress-
ible flow, at Ienst if the linearized flow were sekcted (by
the choice of g=and qJ so that the densities were equal for
both types of flow at the maximum and minimum velocities

and if the ratio of these prescribed velocities is not too large
(2: 1 in the numerical example9). This conclusion is impor-
tant because the design method for linemized compressible
flow is considerably faster than the design method for com-
pressible flow with y other than —1.0.

PART II

SOLUTION BY GREEN’S FUNCTION

In part II a method of solution for the design of two-
dimensional channels with prescribed velocity distributions
along the walls is developed by means of the appropriate
Green’s function. The method applies to incompressible and
linearized compressible, irrotatiomd flow. C)ne numerical
example is presented for an accelerating elbow with linear-
ized compressible flow- and with the same prescribed condi-
tions as example IV of part I.

MEWHOD OF SOLUTION

The method of sblution by Green’s function is in conjunc-
tion with a formula derived from Green’s theorem.

Prtmmm.mm CONmmAmONS

Stream function ~.—In part II it is convenient to define
the stieam function by V, where for incompressible flow

and for linearized compresdle flow (-y= —1.0)

(39b)

For both types of flow V variea from zero along the right side
of the channel, when faced in the direction of flow, to r/2
along the left side.

Velocity potential @.—in part H it is convenient to de&e
the veloci@- potential by @, where for incompressible flow
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and for linearized compressible flow
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(40b)

Channel-wall coordinates,-l?rom part I the distribution
of channel-wxdl coordinate z and y along the boundaries of
constant 9? equal to Oand r/2 in the transformed @V-plane is
given by

(41b)

for linearized compressible flow, and for incompressible flow
is ghll by

and

(42a)

(42b)

where the constants of integration are selected to give known
(specified) values of z or y at one value,of @along each bound-
ary. Because Q*and Q are known functions of @ from the
prescribed veloci@ as a function of arc length along the
channel walls, the shape of the chanmil walls in the physical
~-plane is given by equation (41) or (42) if o is determined
as a function of @ along th”echannel malls. In part II the
solution for Oas a function of@ along the channel walls in the
EN?-planeis obtained by Green’s function.

SOLUTION BY GREENW FUNCTION

Continuity.-From part I the continuity equation becomes
in the transformed @!!?-plane

(43a)

where for incompressible flow

V= Q (43b) .

and for linearized compressible flow

(43C)

Irrotstional motion.—From part I the equation for irro-
tational motion becomes in the transformed @17-plane

(44)

Integral equation for O(~o,~J.-From equations (43a) and
(44)

(45)

so that from appendix E the value of’ o at a point (@.,vO)

*

within, or on, the channel walls in the transformed @V-plane
is given by the ,integral equation

%:.[F%3,-F’%J2W’46)azo,vo)= Zm

Q

where the subscripts Oand ~ refer to the chrmnel-wdl bound-

aries along which ?l?is O and ~~ respectively, and G is the

Green’s function of the second kind for the channel, which

is an iniinita strip of width ~ extending in the &direction to

&m:
Green’s fun&ion G.-The Green’s function of the second

kind t7for the infinite channel in the @X4?-planeis given along

the channel-wall boundaries (Y?equals O and ~ ) by (appen-

dix F)

@ocR;=-log, [coeh’(@-%)-cod (’X’-vJ] (47)

where (~, V) is ady point on the channel-wall boundary and
(@~,’l?J is the point in the channel or on the boundary~at
which o is to be determined.

Numerical integration for tl(@o,*J.—From equations (46)
and (47) .

“ ‘ al&~vlog, [cosh’ (@–@J-2m9(Oo,wd)=
s{-m

}
“ Cof? v.] Od(@—@o) (48)

in which the independent variable of integration has. been
changed from d@ to d(@—@.) so that the origin, for purposes
of integration, lies at @. rather than @= O. If for small

changes in (@—@O), that is, for small A@, the term *V

may be considered constant and equ~ to its average value
over the interval A@, then

b10&V=A log, v ‘

a A@

and equation (48) becomes

2?I-8(00,*J=
(.-a-m{ARvJ;:)+A”lo’’[coshg(@”)”)-

}
Si112Xl?.]‘d (@—@o) —

r
7

1COS2v,] d (@—@o),o (49)
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where the summation sign is understood to mean that the
quantity within the braces is summed over the entire range of
(@–@J between + ~.

Equution (49) determines o at any point in the flow field
(clmnnel). For a point (@~,vJ on the channeJ walls v. k
equrd to Oor z/2 and the integrands in equation (49) become

2 loge cosh I(@–@o) ]
or

2 log, Sinh l(@–@o)l ‘

so thrd equation (49) becomes

. A~o&VU
i? [( )(

A log.v ~
To(%)9.)= A@ ;– A@ )1(50a)

(*- ● --m o

where
AI= I@_a.)+Am— l(*-Q).

where

a= & J1(4-%og, cosh K@-@Jl d I(@–@.)1
o

~= *~(*+.)l
log. Sinh [(@–@o)l d ](0–%)1

(50b)

(50C)

(50d) ‘

(508)

where the + signs apply for positive values of (@—@J and
the — signs apply for negative vahm of (Q—@J. Methods
of evaluating a and p are given in appendix G, and tabulated
values are given for a wide range of I(@—@J ] in table VII.
Equation (50a) determines 19(@,,XVJat any point on the
channel-wall boundaries. Thus from equations (41a) and
(41b) or (42a) and (42b) the coordinates for the channel-wall
shape in the physical ~-plane can be determined:

NUMERICAL PROCEDURE

The numerical procedure for the channel design solution
by Green’s function is the same, except for minor details,
for incompressible and linearized compressible flow. The
stepwise procedure is outlined as follows:

(1) For incompressible flow the velocity Q and for linear-
ized compressible flow the velocity g, or which is the same
thing the velocity Q and the constant downstream velocity
g~,are specified as functions of arc length along the chand
Wnlls

Q=Q(s) ~ (51a)
or

q=g(s) (51b)

wheres is arbitrarily equal to Oat that point along one chan-
nel wall where the velocity tit begins to vary.

(2) Compute V as a function ofs from equations (43b) and
(51a) for incompressible flow or from equations (13b), (14b),
(43c), and”(51b) for linearized compressible flow

v= V(8) “ (52)

(3) Compute @as a function of s from equations (4) and
(40a) for incompressible flow or from equations (16), (32),
(40b), and (51b) for linearized compressible flow. In equa-
tion (32) P.* is obtained from equations (8a), (13a), and (14a).
For arbitrary distributions of Q or g equation (40a) or (40b)
is integrated numerically by using, for example, Sipson’s
one-third rule. Thus

@=@(s) (53)

(4) From equations (52) and (53) V and @ are known
functions of 8 so that

v= V(a?) (54)

Thus V is a known function of @ along the channel-w’all
boundaries in the transformed @V-plane.

(5) If the prescribed veloci~ distribution alo~ one wall
is diflerent from that along the other, the channel will, in
gemral, turn the flow. This turning angle AOis given by
equation (H5) in appendix H. If the turning angle is unsat-
isfactory, a new distribution of veloci~- as a function of 8
(eqs. (51a) and (51b)) is prescribed and steps (1) to (5)
repeated until the desired value of A(?$ obtained. Equation
(H5) is integrated numerically by &ii Simpson’s one-third
rule, for example, and equation (54).

(6) The channel-wall boundaries are straight parallel
lines of constant Xl?equal to Oand u/2, and m%mding to + co
in the @-direction. Along these boundaries of constant S?, a
series of equally spaced points are located at each of which
the flow direction o and the x,y-coordinates of the channel
walls will be determined by numerical integration. In
order to use the tables of a and P presented in this report,
the point spacing A@must be an even multiple of m/24. Thus
the smallest point spacing @4 is equal to X2 of the channel
width (r/2). For a particular prescribed velocity distribu-
tion along the channel walls the accuracy of the solution
increases, and so does the amount of computing, as the
point spacing is reduced. The error for a given point spming
depends on the prescribed velocity distribution, and ita order
of magnitude is given by the leading term of the error series
of the formula used for numerhxd integration (table VIII,
ref. 4, for example). For the numerical example presented
in part ~ of this report the point spacing A@ was r/12.
From equation (54)

where the subscripts @ and @+A@ ref6r to adjacent points
along the channel boundaries.

(7) The value of Oat each point (@o,l17Jon the channel-
wall boundaries is obtained from equation (50a) in which
(A log. V)/A@ is given by equation (55) and AI is given by
equations (50b), (50c), and table VII. IVotethat in equation

.
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(50a) the origin has been moved to @o by &anging from @
to (@—@.). Thus the value of (A log, V)/A@ for a given value
of (@—@O)Vtit?9 with @..

(8) The physical z,y-coordinate at each point on the
channel-wall boundties are obtained by the numerical
integration of equations (42a) and (42b) for incompressible
flow, or equations (41a) and (41b) for linearized compressible
flow where A+* is given by equation (32). The constants of
integration in equations (41) and (42) are selected to give
known values of z and y at upstmxunor downstream positions
where flow conditions can be considered uniform.

NUMERICAL RXAMPLR

The channel design method of part II has been applied to
the design of an elbow for the same conditions as example
IV of part I. The design is for an accelerating elbow with
no local decelerations of the prescribed velocities along the
chrmnelwalls and with linearized compressible flow.

lPrescribed velocity distribution.-’l%e prescribed velocity
distribution along the channel walls is the uime as that for
em.mple IV of part I. The prescribed velocity as a function
of @ is plotted in figure 22.

Results.-As indicated in table VIII,. the elbow design
resulting horn the prescribed velocities given in figure 22
is the same as that obtained by rehmation methods (fig. 21)
for the same prescribed conditions (emznple IV, part I).

The solution obtained by Green’s function (part II)
required one experieficed computar 3 days, whereas the
solution by relaxation methods (part I) required about
10, days. The rehmation solutions provide additional
information, such as the distribution of velocity across the
channel; but for the most part this additional information
is of secondary importance, and the dwign of channels by
Green’s function is more rapid and &erefore to be preferred
over the design by relaxation methods.

-.8°
5 ~ ?. 2“ .% 3~ ~

I t I I I

-.9 -

-1.0-

logeV-1.,1-

-1.2-

-1.3-

FIOUEEZ.-Vailntfon In prcsdkl valma of kg. Vwith4 akngdmnnolwafls of nmnerfml
-pfofnfmrtlT.

“SUMMARY OF RESULTS AND CONCLUSIONS

A general -method of design is developed for two-
dimensional unbranched channels with preacribecl wlocities
as a function of arc length along the charnel walls. Tho
method is developed for both compressible and incompress-
ible, irrotational, nonviscous flow and applies to the design
of elbows, diffusers, nozzles, and so forth. Two types
of compressible flow are considered: the general’ type with
arbitmuy value for the ratio of speciiic heats Y (1.4, for
example) and the linearized type in which Y is equal to
—1.0. In part I solutions are obtained by. relaxation
methods on a transformed plane the coordinates of which
are the streamlines and velocity-potential lines in the physi-
cal plane; in part II solutions are obtained by a Grmn’s
function. The method of solution in part I gives complete
information concerning the flow throughout the chard,
whereas the method of solutio”nin part II gives the chwmel-
wall coordinate only.

Five numerical examples are given in part I and the results
are presented by (1) lines of constant velocity and flow
direction or lines of constant physid coordinate in tho
transformed plane and (2) streamlinesand velocity-potenti(d
lines or lines of constant velocity and flow direction in tho
physical plane. Among- the fiye .e.xamplcs me three elbow
designs for the same prescribed velocity as a function of
arc length along the channel walls but with incompressible,
linearized compressible, and compressible flow. The numer-
ical results of these three elbow designs are tabulated ta
enable a detailed comparison of the three designs.

The shap~ of the elbows for compressible flow and for
linearized compressible flow are very nearly the same; and it
is concluded that, if a. nonviscous gas with arbitrary y
(1.4, for example) were to flow through a channel designed
for linearized compressible flow (-y= – 1.0), the resulting
velocity distribution along the channel walls would be
nearly the.veloci~ distribution prescribed for the limwized
compressible flow. This conclusion is important because
the design method for linearized compressible flow is con-
siderably faster thfi that for compressible flow.

One numerical example is presented in part II for an
accelerating elbow with linearized compressible flow. Tho
elbow shape obtained from the solution by Green’s function
in part II is the same as that obtained from a solution by
relaxation methods in part I for the same prescribed con-
ditions. The time required for the calculations was con-
siderably less for the solution by Green’s function.

Lmwrs ?LICiHT PROPULSION LABORATORY

NATIONU ADVISORY Co~IJ FOR

CLEWELAND, OHIO, Jdy ,??6,1961
A13RONAUTICS
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APPENDIX A

SYMBOLS

The following symbols are used in this report:

A, B, C, D coefficients, equation (29)
A, B arbitrary constants, equation (Cla) -
B,, B~, . . . Bernoulli’s numbem
c constant, equation (E3)
Q Green’s function of the second kind, equa-

tions (E2) and (47)
I, integral (a or ~)
kl coefficient, equation (14a)
1:, coeiiicient, equation (14b)

1 length of closed boundary

n distance in w.y-plane measured normal to

direction of flow (expressed as ratio of

characteristic length equal to channel

width downstream at infinity)
static pressure (expressed as ratio of stag-

nation density multiplied by stagnation
speed of sound squared)

velocity (expressed as ratio of characteristic
velocity equal to constant channel veloc-
ity downstremh at infinity)

velocity (espressed as ratio of stagnation
speed of sound)

velocity used in linearized compressible
flow and related to q by equation (13b)

distance from any point in @~-plane to
point (%, TJ at which logarithmic singu-
larity exists

distance in zy@me measuxed along direc-
tion of flow (expressed as ratio of char-
acteristic length equal to channel width
downstream at infinity)

velocity parameter related to Q* by equa-
tion (18) “

velocity parameter defined by equations
(43b) and (43c) for incompressible and
linearized compressible flow, respectively

compla functions defined by equations
()?3), (l?la), and (l?2a), respectively

Cartesian coordinates in physical plane
(qmxs+ as ratios of characteristic
length equal to channel width down-
stream at irdlnity)

complex coordinate, equation @’lb)
conjugate of z
integral, equation (50d)
integral, equation (500)
ratio of specific heats
finite increment
increment of

e

Ae
P

P*

*’

# and #*

(d

Subscripts :
a,b

d
o
u
A++

(O–+o)

(@–@O)+A@

0

1.0

flow direction in physical W-plane (meas-
ured in cmmtarcloclnviee direction from
positive x-axis)

channel turning angle, equation (12)
densi~ (expressed as ratio of stagnation

densi~)
densi~ in linearized compressible flow and

related ta p by equation (13a)
velocity potentifd used as Cartesian co-

ordinate in transformed ‘@W-plane and
related to p or P* by equation (40a) or
(40b), respectively

velocity potential for incompressible and
linearized compressible flow, respectively,
equahons (4) and (16)

stream function used as Carte9ian coordi-
nate in transformed @Xk-planeand related
to # or #* by equation (39a) or (39b),
respectively

stream function for incompressible and
linearized compressible flow, respectively,
equations (3) and (15)

boundary value of #*, for linearized corn- ‘
pressible flow, along left channel vmll
when faced in the direction of flow,
equation (32)

any harmonic function in @v-plane

quadities related to two velocities (g= and
~bj rWpeCtiVdy) for -which dtilty given
by equation (8a) is equal to density p
given by equations (13), (13a), and (13b)

conditions downstream at infinity
point in @W-plane at which o is determined
conditions upstream at infinity
left channel wall, when faced in direction of

flow, along which +“ is equal to Ax”
point at (@–@J on either channel-wall

boundary
point at [(@—@J +A@] on either channel-

wall boundary
along lines of constant q, #, p*, and #*, re-

spectively
right channeJ wall, when faced in direction

of flow, along which V, +, or Y* is equal
too

left channel wall, when faced in direction
of flow, along which x is equal to 1.0

left channel wall, when faced in direction

of flow, along which v is equal to ~

.
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APPENDIX B

EQUATIONS OF CONTINUITY AND IRROTATTONAL FLUm MOmON IN TERMS OF TRANSFORMED P, *-COORDINATES

Consider the two-dimensional irrotational motion of a
fluid particle in the physical zy-plane. The fluid particle is
defied by adjacent streamlines (constant +) and veloci@-
potential lima (constant P) spaced an and 6s apart as
indicnted in figure 23. The velocity Q is psral.lel to the
streamlines and normal to the velocity-potential lima.

Continuity.-From continuity considerations of the fluid
particle in figure 23

or

\/

@l)

x
FKWRE 2Z-Flnfd tide bounded by mramlin = and vek!mwtential IIneab phyxkral

q-plane.
.

But, from geometrical considerations (ref. 6, p. 167, for
axample)

(B2n)

and
‘ I a(h) ae .—-— ._—
68 b b8

@2b)

so that equation (B1) becomes

which, combined with equations (3) and (4), becomes

(~alO~ p+alOg, Q ao
P ap ap ) +5J=0

(6)

Equation (5) is the continuity equation esprewed in terms
of fo,$+oordinates

Irrotational fluid motion.-For irrotational motion of the
fluid particle in-figure 23 .

But, from equations (B2b) and (B3)

a10g. Q ae

an –z=o
or

which, combined with equations (3) and (4), becomes

p alOga Q aO_o——.
a+ aP

Equation (6) is the equation for irrotational
expressed in terms of the P,#-coordinates.

APPENDIX c

RELATION BETWEEN VELOCITY AND DENSIT~ASS-G

The approximate, linear relation between pressurq p and
specific volume l/p fit suggested by Chaplygin (ref. 6) is
$@Jl by

p=A–!? (Cla)
P

from which
dp B—. —
dp 1# (Clb)

(B3)

(6)

fluid motion

LIN&kR VARIATION IN PRESSURE WITH SPECIF.IC VOLUME

I

where A and B are arbitrary constants.
If p denotes the static pressure expreawd rIsa ratio of the

stagnation density multiplied by the stagnation speed of
wind squared, Bernoulli’s equation is

dp”
y+qdg=o

1
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which combined with equation (Clb) integrates to give the
approximate relation between velocity ,and density

(C2)

For convenience equation (02) can be written as

or
p*=(l+**2)-1/2 (13)

where

P*=kw (13a)
and

q“=k~ (13b)

The constants kl and k, replace the two arbitrary constants
in equation (C2), and their vahwa are determined so that
for any two arbitrary vahma of g (d@nated by q=and qb)
the values of p given by equation (13) equal the values of p
given by equation (8a). Thus the valu& of p given by
equation (13) for g eqd b gc or @ me ~rred; for ~ oth~
valuea of g the valuca of p are approximate. The constants
kl and k~are determined from the conditions

(C3)

From equation (13) and the conditions given by equation (C3)

and

J

()
Pa ‘_ ~—

k,=; Pb

()

(14b)
~.~l

Pbqb

w-here p= and Pb are determined by equation (8a) for the
selected value9 of g=and ~b,respectively.

The valuw of g=and @ might, for example, be sdected to
equal the maximum and minimum values of q (which vahm
of gmust occur on the channel walls and are therefore lmown).
&o, the vah.k!aof g= and gb might be selected to equal the
upstream and downstream velocities ga and q~. In this case
the upstream and downstream channel widths would then
satisfy cc@inuity for a ga9 with the correct value of y (1.4,
for example). If the upstream and downstream velocities
are equal, their value and the value of some other velocity
(the maximum or minimum -velocity, for example) can be
selected for q= and gb; or, if desired, qacan be eqUd h qb,b
which case if

%=!l+~ where c~O

it can be shown from equations (14a) and (14b) that

and
r .

(C4b)

This latter case, in which ~a=gb=~, corresponds to the
method used by Chaplygin (ref. 6) and K&rrn6n-Taien(ref. 8)

in which the correct relation between p and ~ is replaced

by a straight line (eq. (Cla)) that is tangent to the correct
relation at one point (where @=~b).

APPENDIX D

EWJATIONS OF CONTINUITY AND IRROTATIONAL FL~ tiOTION IN T~MS OFTRANSFOWEIIP*,4*-t300RD~ATES

Consider the two-dimensional irrotational motion of a
fluid particle in the physical ~-plane. The fluid particle is
defined by adjacent streamlines (constant +*) and velocity-
potentifil lines (constant P*) spaced &vand 88 apart as “indi-
cated in figure 23. The velocity q“ is parallel to the stream-
line and normal to the velocim-potential lines.

Continuity.-l?rom continuity considerations of the. fluid
particle in figure 23

g (p*q* 137b)=o

or
a log, p*+a log: q*

38
38 +& *)=o

which combined with equation (B2a) becomes

or, from eqoations (15) and (16)

(1 a 10g. P* a 10g. q
.+ 3+$*=0 (lx)7 w ap*

But, from equation (13) .

1 a 10g. P*= —q*2 a 10g. q*
-jiE ap*CFir@’*

so that equation @l) becomes

a 10gaT* ao _.

& a~’” ‘~–
(D2)
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Finally, if

u= !7”
1+Jm

(18)

then
b log, q*

m
= a log. u (D3)

so that equation (D2) becomes

a 10gc u be
hp. +~=o , ‘ (17)

Equation (17) is the continuity equation expressed in terms
of q*, #*-coordinates and loge u.

Irrotational fluid motion.-For irrotational motion of
the fluid particle in figure 23

or

which combined with equation (B2b) becomes

t) lo~ q* d#* ae ~=Q—.—
a+* dn hp”ds

or, from equations (13), (15), and (16)

.W.2!L.
‘ 4+= ap*-O

Finally, from equations (D3) and (D4)

a 10g. u ae o

a@
—_W=

(D4)

(20)

Equation (20) is the equation for irrotational fluid motion
: (q* 8s)= o expressed in terms of w*, #*-coordinates and log, u.

APPENDIX E -

INTEGRAL EQUATION FOR t9(@m’%J

If the distribution of the angle o(o,*) in the transformed
@9-plane is harmonic, that is, satisfieaequation (45) within

( )
and on the channel walls X equals O and ~ > then from

Gr&’s theorem and the theorem of mean value it can be
shown that the value of 0 at a point (@.,VJ within (or on)
the channel walls is given by (ref. 9, p. 204, for example)

where the two integrals on the right side of equation (El)
represent the line integral around the channel walls in the
countercloclmise direction with the signs adjusted so that

& represents the inner normal to the path of integration.

The function G(@,W) in equation (El) is of the form
(ref. 9, p. 204)

(7(@,v).=log. :+@(@,*) (E2)
.

where r is the distance from any point (@,ik) to the point
(@~,wJ and where u(@,~) is an ,arbifmry function that is
h~ofic ti&in and on the channel walls., (Thus from
equation (E2), .G(@,~) is harmonic within and on the channel
walls except at the point (@o,*.) where a logarithmic singu-
larity exists.) Because the harmonic function ~(@,il) is
arbitrary, the function f3(@,il) can be selcx+edso that along

( )the channel-wall boundaries ~ equals Oand ~ ~ is a con-
.

stant c given by the following equation (obtained from notes
presented by Tamarkin and Feller in the 1941 Summer
Sessionfor Advanced l%struction and R,esemch in Mechanics
at Brown Univ.):

.=? (E3)

where 1is the lmgth of the path along which the line integral
is taken. For the path under consideration 1is iniinitoand

therefore G(@,z) can be selected so that.% is zero along the
—

channel walls. A function with this property is a Green’s
function of the second kind. Equation @l) becomes

or, combined with equation (43a)

a 10g’v ia~om from the prescribedAlo& the channel walls ~

velocity distribution so that, after the proper Green’s funo-
tion G has been determined (appendix F), equation (46) de-
terniines the value of o at any point (@o,~J. The valuo of
@~,*J given by equation (46) can be adjusted by an arbi-
trary constant of integration to give a speciiied value of o mt
one point in the flow field.
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APPENDIX F ‘

GREEN’S FUNCTION OF SECOND KIND

From appendix E Green’s function of the second kind Q
satisfiesthe condition

a~
m=o

along the charnel walls, which are straight and parallel

( )
boundaries X! equalz O and ~ extending to + CO”in the @-

direction, and aatisfieathe equation ,

?J2Q a=Q
~+~=o

everywhere in the channel except at the point (@~,’YJ
where d has a logarithmic pole. For these conditions the
Green’s function (3 can be obtained by analo~ from the
velocity potential for incompressible flow into a point sink at
(@o,vO) between straight parallel boundsrks at 3Pequal to O

~ The logarithmic pole for (3 at (QO,WJcorrespondsand ~

to the point sink, and the condition ~$=0 at the boundaria

corresponds to zero velocity, that is, no flow normal to the
boundaries.

The velocity potential for fluid flow ivith the boundary
conditions just described is obtained from two Mnite
series of point sinks with the sinks of each series spaced ~
distance upart in the !l?directiomand the two series arranged
by the method of imageain such a manner that no flow crosses

~G=O. This arrangement of point‘he bomdatiw’ ‘at b’ M?
sinksis shown in figure 24.

The complex function WI for the iirat iniinite series 0[
point,sinks is given by (ref. 10, p. 112, for example)

wl= —l&gdSinh (z—2.) (Fla)
where

Z=q+iw (Fib)

The complex function m for the second infinite series of

(
point sinks mirror image of the&t seriesin ordex to prevent

)
flow across the boundaries ~ equals Oand $ is given by

‘W2=—log. Sinh (Z—zo) (F2a)
where

ZC+—iq (3?2!b)

The complex function w for the combined flow becomes from
equations @la) to @b) “

W= WI+W2= —log. Sinh [(@—@o)+’i(X’-?J?o)]—

log. Sinh [(@–@.) +’i(v+vo)] (F3).

Point sinks given by

i’4

“1

o w, =-10% sinh [[U=%I + i(Y-MJ]

❑ W2 = -loge sinh [(*@’0) + j(y+’%)]

u/2
u Sss ~

.
,’,

,<,
Ghonnel WOIIS --(: ‘u .-.

‘. ..-”

‘.
( ~ —

‘.

‘. o b-qJ

4 .3!
.

-VIZ

,

Fmum 24.-TwoMnIta mi-fe3ofrdnt .2infareqdred h thedevelopment of Green’sfnnotion
of the - kind (7.

The Green’s function of the second kind G corresponds to
the velocity potential for the incomprwsible flow and is there
fore given by the real part of equation @3)

Q= –; log, [cdl’ (@–@o)–cos’ (V–vo)] [Coshz(@–-@J–

cos~(v+wo)] @’4)

But along the channel wallsq?is equal to Oor ~ so that

Cof? (’I?+ *.) =Cof? (i—v.)
and equation (F4) becomes

Go~:= —log, [Cosl? (@—@o)—cos2(S’-wo)] (47)

Equation (47) gives the Green’s function of the second kind
along the channel walls (shaight parallel lines of constant ~

equal to Oand ~ and extending to + co in the@direction).
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APPENDIX G .

EVALUATION

Several techniques, depending on the magnitude of the
upper limit I(@—@O)1, were used to evaluate the integrals
a and 13given by equations (50d) and (50e). Each in-
is treated separately in this appendix, and the values of
(@–@J for the upper limit I(@–@J I are considered positive.
For negative values of (*–*J the magnitudes of I (that

is, of a or p) are equal for corresponding values of ](@–@O) ]
but opposite in sign. As a result the values of AI have the
same sign.

. mTE~RALa.

Small and medium values of (@ —@O).—For smell and
medium value9 of the upper limit of integration (@—@O)
in equation (50d), that is, for 0< (@—@J S 60~/24, the
integral a is evaluated by Simpson’s one-third rule using
increments of .(@—@J equal to r/48.

Large values of -(@-@O).-For large vslues of (@–@O),
that is, for (@—@J>60@4, the integrand in equa-
tion (50d) becomes. .

lo~ cosh (@–@O) = (@–@O) –log, 2 (Gl)
,

so that equation (50d) becomes

J
6orp4a= loge cosh (@–@O)d(@–-@O)+

o

.S‘“-’J[(@–@o)–log, 2] d(@–@o)
earn’

[

(@–@O~ () 6g3147(@–@O)–25 .398552~2.5.809782-l- ~— . 1
S0.411230— 0.693147 (@—@J+&@J2 (G2)

Equation (G2) gives valuea of a for vshms of (@–@O)
equal to or greater than 60r/24. Values of the integral a me
tabulated in table ~ for a range of I(@—@J ] between O
and 100m/24 in increments of r/24. For negative values
of (@—@.) the sign of a is negative.

INTEGRAL L?

Small values of (@ —@O).—For (@—@J equal h zero the
integrand of equation (50e) becom~ inf3niteso that Simpson’s
one-third rule cannot be used to evaluate b @ this region of
(@–@O), ss wss ‘done for a. However, equation (50e)
integrate by parts to give

OF.AND19

J
(*-0)

log. Sinb
o

((b--q cz(@-@.)=(@-@o) log, Sinh(@–@o)–

J‘*-*”)(@–@o)Ctnh (@–@o) (i(@-@o) (G3)
o,

where the integrand (@—@.) cti (@—@.) on the right side
of-equation (G3) can be expanded in the following seriesform:

(@–@o) Cinh(@–@o)= 1+2’B’(;*–@”)’–Z’B’(:*–@”)’+
2eBb(@—@o)e 28BT(@—@o)s+2’Ol?0(@–@O)10

6! – 8! 101 –

2“Bll (@—@o)12
12! ‘“ “ “ (G4)

where Bl, Bs, and so forth, are Bernoulli’s numbers (ref. 11,
p. 90, for mample). From equations (G3) and (G4)

/9=(@-@J log. Sinh (@–-@o)-(@-@J–
(@–@.)’ (o–q’

~+ 225-

2 (@—@o)’ (@—@o)o 2 (@—@o)’l 1382 (@—@O)13
6615 ‘42,525 ‘1,029,106 +8,300,667,375—. . . (G6)

Equation (G5) was used to obtain B as a function of (@–iPO)
for Os (@–@O) s8@.

Medium values of (@—@o),—For medium values of the
upper limit of integration (@—@J in equation (50e), that is,
for 87r/24<(@-@O) S 60r/24, the integral j9 is evaluated by
Sti~son’s one-third rule aa was done for a.

Large values of (@–@O),—For large values of (@=@O)j thnt
is, for (@—@O)>60T/24, the integrand in equation (50e)
becomes

log. shill (@+@.) = (@–@o) –log, 2 (G6)
so that equation (60e) becomes

p= rmlog. Sinh (o+.) (i(@-@o)+
o

J‘*-*”)[(@–@J-–log,2] d (@–&O)
eorl!u

[
=24.576082+ ‘@—2@0)2–0.693147(@–@o) –26,398662 1
=—0.822470 —0.693147(@—@O) ++(@—@O)2 (G7)

Equation (G7) gives values of /3for valuea of (@–@o) equal to
or greater than 60’z/24. Vahwa of the integral/3 are tabulated
in table VII for a range of 1(@—@O)I between O and 100m/24
in increments of m/24. For negative values of (@—@O),the
sign of 9 change9.

APPENDIX H

CHANNEL TURNING ANGLE

If the prescribed velocity distribution along one channel
wall differs from the distribution along the other wall, then
in genernl the channel deflecte an amount AO,which is the
difference in flow direction far downstream and far upstream

of the region in which the prescribed velocity distribution
Vtie9. Thus,
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For large vILluesof ](@—@O)I such as occur far upstream
and far downstream of the region in which the prescribed I ,ti=:f:=.[(’’gq,-~l~qJd.(H,,
velocity varies along the channel walls 2

Likewise, far downstream @O>@ so that
cosh~ (@—@O)>> CO#(~—gO)

l(d?-@o)l=– (@–@o)
?(I that from equation (47)
I

i Q,= G:=–2[@-@o)l-log, 2] m) and equation (E@ substituted into equation
)

(46) giVeS

so thut equation (H2) substituted into equation (46) g@a I Equation (H5) determin= the channel turning angle AO.
,

REFERENCES

1, Carrier, G. F.: Elbows for Accelerated Flow. Jour. Appl. Mech.,
vol. 14, no. 2, June 1947,pp. A-108-A-I 12.

2, Lighthill, M. J.: A New Method of Two-Dimensional Aerodynamic
Design. R. & M. No. 2112, British A. R. C., 1945.

3, Clweer, Francis H.: Two-Dimensional CompresMble Flows
Having Arbitrarily Specified Pressure Distributions for Gwes
with Gamma Equal to Minus One. Rep. NOLR 1132,Sympo-
sium on Theoretical Compressible Flow, U. S. Naval Ordnance
Lab., June 28, 1949,pp. 1-33.

4. SouthwelI, R. V.: R.elasation Methoda in “Theoretical Physics.
Clarendon Press (Oxford), 1946.

5. Liepmann, Hana Wolfgang, and Puckett, Allen E.: Introdutilon
to Aerodynamics of a Compressible Fluid. John Wiley & Sons,
Inc., 1947.

6.

7.

8.

9.

10.

11.

Chaplygin, S.: Gas Jets. NACA TM 1063,1944.

Emmona, Howard W.: The Numerioal Solution of Partiaf Differ-
ential Equations. Quart. Appl. Math., vol. ~, no. 3, Oot. 1944,
pp. 173-195.

Tsien, Hsue-Shen: Two-Dimensional Subsonio Flow of C.hm-
premible Fluids. Jour. Aero. Sci., <oL 6, no. 10, Aug. 1939,
pp. 399-407.

Osgood, William Fogg: Funotione of a Complex Variable. G. E.
Steohert & Co. (New York), 1942.

Streeter, Viotor L.: Fluid Dynamics. MoGraw-Hii Book CO.,
~c. (New York), 1948.

Peirce, B. O.: A Short Table of Integrafs. Third cd., Ginn and
Campany (Boston), 1929.



1s4

TABLE I—DISTRIB’CH’ION

R13PORT 1ll*NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS .

OF VELOCITY Q AND FLOW DIRECTION 8 IN TRANSFORMED #-PLANE FOR EXAMPLE III
(ELBOW WITH INCOMPRESSIBLE FLOW

~vadatbnin Qwithan3hsth 8fJlowamI.lel walLsp10ttwlinn&2QS-04 odnLo, A6-sJs5q

0.126 0.253 0.376 Lwlo

\

+

VJ

O.m 0.626 o.7m 0.876

“oQ o 0 0 0 0Q o Q o Q 8 e o ,.9 0 0

-2 m
-L 875
-L 7m
-L 625
-L .9M
-L 375
-L 250
-L 126
-L 000
: y7

-. m
-. m
-.375
-. 2m
-.125
0
.126

:3%
.mo
.625
.760
.676

L m
L125
L2HI
L 376
LOM
L 625
L 7iLl
L m5
2000
2126
22m
2375
2mo
262.5
27m
2876
Xm
Zlx
&m
3.875
Z.ma
%625
3.7M
z m6
4m
4125

%!
4.600
4.m6
47m
4. mb

H%
6.260
5.376
&m
&675
6. 7m
5. mb
&om

am
.m
.Om
.Swo
moo
.Bm
.Ewo

:%%
.Ko3
.am
.W30
.m
.Emo

:$%
.Bm
;%

. ms

.6124

. M7e

. iO18

.7448

:%

.SsE

.9177

.M18

.SEaJ

;g

i%l
LOOOO

%!$

:=

LUW6
LC#il
LKWI
LCQQ

:E
LOOMI
LOG06
LIXW
L0620

i%%
L~

H%
LW03
LOUQ
l.moo
L=
LWQ
LC#3

%%

o
.01
.01
.01
.02

%
.m
.09
.14
.al
.3)
.45

i;

k$
5.06

H!

H!
24J

252
–&M

–1X 03
–17. 77
–% 67
–27. 72
–32 m
–2a 10
-4Z31
-4& 48
–m. 34
–67. a
-eLoo
–m. 84
–ma
–72 57
–75. 42
–77. e3
–m. U
–8L 97
-a 54
–84 84
–& !30
-m 76
–m.43
-m. 95
-m. 34
-3s. 64
-m. w
-m. 01
-w. n
-4?3.19
-80.24
-m. 23
-a 31
-ml. 32
-E9. 34
-m. 34
-m. 35
-s4 S5
-8Q36

am
-mm
.m30
.5000
.6031
.ml
. 6ml

:E
.W
.CM7
. WI
. mm
.mzs
.5139
.5MS
. tillb
.5223
.5424
.mw
.eo36
-mu
.5213
.7031

%g

. ma

.8432
-mm
:=

:E
.9218

,:%
-9874

:E
.9544
. WI

:%%!
.9766
.67W
.W7

:E
.IEca
.W42
.W67
.W9
;g

.s4s3

.8W3

.Ww
-m
.ms3
.Wm
.%$9

l:E
LW

o
.01
.01
.01

%
.04
.C6

:B
.18
.27
.40
.ecl

iti
.2.’04
&n
402
4.02
3.19
Lm

--- %
–7. 18

–IL 01
–Ill 16
–19. 59
-2L22
-23. a3
-3395
–38. M
-Qm
-49. Sa
-m. 57
-m. ol
-@L 16
-a 01
-m. 55
–72 74
–7h 59
-7a 10
-m 27
-8211
-m. 67
-84 %
-3301
-m. W
-m. m
-m 01
-W.m
-a m
-a 3s
-m. 03
-EL 13
-m. 21
-m. 25
-ma
-89.31
–m. s
-8a 34
-m 35
-.s3.35
-m 35
–m. 36

0.m
.JYmo

:%3.ml
.JK02
.5m2
.m

%$J

. m19

:%5!
.mm
.5107
. Sln
.5276

:E
. m74
.6132

:E
. 6Q19
.7162
.7387
.7t&3
.7773

:!%
.S21s

;=

.81M

.W87

.8785

.S$m

.mm

.9111

.mal

:E
.9621
.Q60s
.W
.9746

;g

.W17

.W41

.6WS

.W71

.m

:E
.Wa4
.WM
.%97

:%%
1.m
I_m

o
.@l
.01
.01
.O1
.02
.Co
.04

:$
.14
.21
.m
.46
.e.5
.94

M
L73
L39

–i~
–8. 52
–e%m
–9. 46

-13.05
–1& 97
-2L 17
-25.60
–a 20
-8494
-m. 76
-4458
-4Q36
–6L 00
-69.44
-6263
-m. Sl
-70.07
–73 27
–76. 12
-7a 03
–8Q 76
-8256
-s407
-S& 32
-a 82
-m. u
-m. 73
-3a 20
–SL 64
-Ea 79
-Ea 97
-a Oe
-m. ls
-m. 24
-EfJ.23
+3.30
-m. 31
-s9. Es
-89#4
-Ea.35
-8U 35
-m. 3-5
-m. 36

amen
moo
.mm
.5001
. mu
.5067
.Sma
.mos

:%%
. m16
.m25
.m37
.mm
.mm
.5124

:%

:RJ

.5W0

. Q32

.634

:HR
.6391
.70s2
. 71m

:%
. 765a

:%!
.7858
.7WS
.ml
.&Es
.3378
.Sm7

:%%’
. KU6
. 91e4
.ml

:=
.9384
.9n7
.9786
.s342
.-
. W19

.:%%
.3973

:%%
.W92

:E
.E#3
.Wm

i%%

o
.W

::
.01
.01

:%
.04

:%
.11
.16
.24
.32
.44
.m

-:2
-.75

-L ~
--3_56

-& w
–&81

–1L34
–14 76
–1& a
–z 53
–m+ 79
–3L 2S
–2& 84
+0.64
4L B
–50. 62
–54 65
–m. 14
–m.40
–67. %
–m. %3
–74. 17
–77. 02
–79. 46
–8L M
–m. 30
–84 74
–S& 91
–ffl 84
–67. 6s
–33. 10
–3s. m
–m. 78
–m. us
–s9. 10
–89. 19
–m. 23
–s !29
–m. a
–a 23
–89. 34
–m. 36
–m. 85
–m. $5
–E3.%
–89 36
-ml 36

.O.m
.m
.Eo312
. mm
.m

:%8
.W

:%%
. m17

:K#
.S@3
.ScLE3

:=5
.5849

:%

%/J

.W2

. m77

.6316

.6446

.6Q7

:%%
.W3
.mm

:%
.7249
.7374
.7524
.7m7
.7891
.8007

RJ

.mm

.Mw

.W54

.Mlo

.Qs38

:%%
.Wa8
.CEw

:%
.9356
.WQ

%%
. MW1
.WM
.9996

:2

i$%

o
.C4
.IM
.Cm
.Oa
.W
.m
.00
.W

–: E–.01
—.
—.ti

zfi
—.36

––i !!
–218
–8. 46
–h 19
–7. 33
–9. 89

–12 84
–1& 14
–19. 76
–23. a
–27. m
–82 16
–a6. 67
-4L32
-4&04
–m. m
–5s .51
-60. U
-64 4a
–6% ti2
–72 m
–75 44
–7% 27
–m. 67
–82 FQ
–84 35
+&w
–Ea 76
–m. 57
–a Is
–8% 62
–s3. %2
–89. 11
–89. z
–w. 29
–ml. 3
–m. 34
–Ea. 35
–ml. 3a
–s9. 85
–ml. w
–m. 35
–m. 36
–m. 36
–m. aa
–39. a$
–a 36

amx
.5XK
.mx

.%

.mm

:%

:%
. m16

:!%
.mm
-m
. Uloa
.545
.Qoo

:%?!
.5444
.5544
.6947
. mm

:%%

:E
.6a34
.6278
; &M;

:E$
.mn
.e@M
.m77
.n86
.7434
.7FW

:%
.841M
.S7m
.W22
.9125
.E3a5
;&a

.9705

.97&2

.W7
-Mu
.Mo5
.9957
.W71

:%+
.s%)2
.9W6
.WJ6
.mm
.W2’3

iE

o

:M–.01
–. 01
–. 01
—.02
—.m
—.
—.2
—.69

xl
—.
—.~
—.64

––i U
–224
-2. a
-466
-6.43
-8.57
-ILC9
-13 w
-17.20
-m. 74
-24 E5
-% 62
-32 w
-37.87
-4201
-46.78
-6L IQ
-m. M
-6LB
-66.$2
-m 02
-m. 82
-n. 11
-79.61
-~ ~
-M.17
+h n
-m. 92
-87.B
-Ea.a
-85.‘m
-m 28
-m 45
-m. E3
-a b5
-E2Ln
-3a4Q
-m. 46
-89.48
-3Q41
-m. 39
-a 88
-m 3
-m. 37
-m 37
-a 37
-m. 37
-m. 36

0.Em
.m
tax
.ml
. ml
.W7
.mm
.W

:%
.mfi.mls

%iJ

.6074

. .51Co

.5139

.6184

.m

.52Q5

. m57

;%

.mll

.536s

.6721

.Sm

. m17

.6332

.ma9

%%’
. elllz
.6248
,6442
.Wa
. m75

:%
.7018
.8222
.W13
.s773
.W14
.9Z%
.9414
.wn
.m
.97s3

:%
.W16
.rKw
.9977
.!MM

:Ml

:%
.em

iE
LWM

o

-: E–.01
–. 01
-. 02
—.a3
-. CM

ZE
–. 14
–. !21
–. 31
–. 45
—.67

–7 E
–207
–293
-L%

–7. 31
-9.46
-11.95
-14,79
-17.03
-2L 44
-m. 19
-.xl.rn
-s3.44
-37.al
-#Am
-47.36
-5235
-67.49
-6269
-67.66
-7214
-m 07
-n 37
-8210
-8430
-86.05
-87.4
-8&43
-S9.16
-89.M
-a 64
-w 07
-w 07
-s9.w
-w. m
-m. 73
-s3.62
-a 64
-m. 4a
-39.44
-89.42
-m 40
-E9.39
-m.38
-39.37
-39.37
-w 37
-8$.37

0.m
.mx

:%
. mm
.0331
. ml
.Km

:%!

%J

. rnw

.mm

.6339

:%?
.BxL3
.6118
.6146
. sln
.5207
.6237
. 6’.a7
.mm
.mm
.6848
. an
.E3%3
.6414
;%

.64s9

:%!
.Exb
.m
.6644
.6916

:%%
.mm
.msl
.3369
.W36
.91$3
.0397

:K
.=

;%

.mm

.9237

:E
.mm
.UW3
. W39,
.W$9

i=
1.m

o
-.01
-.01
y, 01
-. 02
-. 03
-. 64
-. m

::
-.18

~. 3
-.

%’
–719
–Ln
-241
–3. 84
-4.54
-6.01
–7. m
-9.97

-1246
–1& !47
–la 41
-2L pa
-2569
–E M
-m. 77
-8R 21
-a. &l
-47.73
-62 a
–6s. 32
-64.31
-69. w
-74.88
–7a 96
-82 n
-84 m
-8s m
-Es 82
-66.44
–m. 2a
–0), n
-m. m
-91.06
–w Q9
-w. m
-co. m
-m. 19
–59<00
-W 72
-al w
-89.62
-s9. 47
-w. 43
–89. 41
-89.39
-al. 38
–m 38
-3%37
-39.37
-33.37

aEcoI
.m
.m

:8%
.mm

:%

:Wi?
moo
.mm
.500U
.mm
.m
.mm

:%!
.Smo
.m
.mm
.Eom

:%%
moo

:%’4
.m

:%!
:%3
:%’
%J
.6716
.0134
.6576
. ?Q18
.744s

;=

..SSZ3

.9177

. Ma

:%’
.WI
.W76

1.mm
1.m
L~
L mm

;%%
I. Mum
L~
1.m
1.0000
1.0000
l.llxa
1.m

o
-.01
-.01
-.01
-. 0!

%
-, N

:;
-. ‘z

~, E
-.01
-. %

-1, z
-L SC
-262
-3.40
-4.0.3
-a 10
-7. w

-m la
-1262
-lh 4a
-l& M
~~ ~

-m, m
-m. m
-33.34
-4a. 02
-47.04
-a 19
-56. M
-@18
-7281
-m 23
-8246
~&g

-89.76
-m. C9
-91. m
-02 W
-s262
-8262
-02.34
-0201
-91,57
-91406
-03452
-w. 03
-89.73
-86.04
-m 64
-W 48
-w. 44
-n 42
-w. 40
-W. 39
-89. LRl
-69.37
-w< 97
-89.37

,.
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TABLE II—DISTRIBUTION OF PHYSICAL COORDINATES z AND v IN TRANSFORMED m&PLANE FOR EXAMPLE IJl (ELBOW
~TH INCOMPRl?&31BLEFLOW

[-M variation in Qwith arolensths along ohmnd WOUSPIOW h fW. Z Q.-I3.5, QJELO.AS-W-WI

o

o 0.125 0.251 0.376 O.m 0.625 0.75) 0.876 l.lm

z u v

am
.W2
.W2
.m2
.Cm

:E
.Cm
.W2
.Kr3

%3
.W2
.mz
.mz
.ml

–: E
-. C06
–. Ols
-.024
-. Ml
–. w
–. (@J
–. 135
-.165
-.246
-.316
–. 3W
–. 491
–. W4
–. m
–. m
–. %s3

-1. lm
-L 247
-1. m
-1.546
-L 697
-L 847
–1. W@!
-2142
-2 m
-2 m
-2 5oi
–2 m
-2 E34
-2 w
-3. W3
-3.225
-3.332
–3.4Ea)
–3. W
-3.732
-3. 8s9
-a ms
-4. lm
+234
-4.359
-4.484
-4.6a3
-4734
-L&w
-4. s34
-& lW

r

-x 978
-37m
-3.478
-3.223
-2978
-2723
-2478
–2 !Ea
-1.978
-1.7’23
-L m
-L m
-. 2s2
-.7’33
-. 48s
-.243

.Cm

.240

.476

.707

i%
1.337
L 576
L ?76

;!E!
2334
2&M
2m5
L 616
2Q57
S.mo

%
8.323
%476
8.5U
&m
3.65$
8.673
x 7m
3.721
s.737
3.749
z 763
3.704
3.7Ea
3.773
3.770
3.778

;%
am
3.784
3.786

:%
am
z 791
3.m3
3.TM
3.TJ5
3.797
a7w

s z

-3.973
-3722
-3.478
-3. m
-2978
-2723
-2478
–2 223
-1.076
-1. 72s
-L 4nl
-L no
–. ml
–. 732
–. 484
–. !n3

.Cn3

.252

.494

.734

1:2
L433
1.623

x
2s33
2 m!

:Z
3055
3.218
3.m7
3&31
&6m
3.721

:%
& 919
3.!W3

:%
4.015
L CM
Lcrm
4032

MH
4.C33
4.063

2%
4.OM
4.034

2%
*m
.LCm
4.OM

2%
4W4
4.ok5
& 017
4.048

z

-a w%
-% m
–x 473
–3. m
–2 97a
–2 728
-2478
–2 223
–L $78
–1. 7’23
–L 478
–1. m
–. 979
–. m
–. 481
–. 2s3

. Ols

.261

.m

.751

1:%
1.4Ta
L707

k?%
2W3
2.ml

?%
3.102
3369
3.m!3
3.676
&am
a mo
3.Ml&
4.CM
4.1G3
4.130
4.Ml
4.162
4.Im
4.171
4.172
4.in
4.I@
4.lea
4.161
4.la
4.lW
4.llxl
4.159
4.llm
4.Ml
4.lm
L 163
.L161
4.Ie5
4.le8
4.lea
4.169
4.170
4.172
4.173

z

–3. 978
–3. 727
–3. 4n
–% 277
–2 977
-2 m
–24n
–2 m
–L 977
–1. 727
–L 4n
–1. 227
–. ‘an
-.727
-.477
–.227

.023

.273

.523

i%
L2@
1.516
1.761
2m3
2242
24n
2705

:%
3.341
3.=1
3.7WJ

:%
4.119
4.203
:%

4.314
4.324
4.328
4.326
4.323
4.317
4.3U

i%
4 29!
4.233
4.2%7

2%?

H%
4,2%7
4.m
4.Z39
&m

2%

:%
.L297
Lm

z 9 z v u v

a 252
.252

%
.262
.252
.252

:%!
.m
.251
.251

:2
.243
.245
.242
.237
.230
.218
.X0
. lm
. Ml
.113
.Cd7
.010

–. cm
–. 137
–. ‘x%
–. m
–. 444
–. M9
–. 705
–. m

-L 0?.2
-L lW
-L 322
-1. A%
-1.648
-L 863
-L 985
–2 119
-2.267
-2413
-2 &u
-2 m
-2 m
-2962
-3. Q33
-3.223
–3. 351
-3.478
–% MN
-a 7m
-3. m
-3. w
-4.107
-4. m
+866
-4.482
-4. @)7
-4.733
-4.6s9
+(E3
-& K@

u

Q.602
.m
.&m
.W2

5%
.M2
.Sa3
. &Il
. 5)1
.501
.&m
.489
.497
.496
. 4m
.48$
.470
.m
.454
.434
.4U3
.375
.m2
.279
.216
.142

–: E
–. lm
–. ml
–. 418
–. 567
–. TZ7
–. 895

-1.070
-L 249
-L 428
–L 601
-L nb
-L Ml
-2101
-2256
-z 4a5
–2 E49
-2 w
-2 m
-2 em
-& m
-3. !2%2
-3. WI
-3.478
-2. w
-3.730
-3.6.$3
-3. ml
-4 lIM
4231
-4. m
-4. 4E1
-4EU6
-4. 7s1
4em
-LS31
-L lIM

Y

0.752
.752
.752
.752
. 7b2
.7452
.762
. 7b2
.761
.751
. 7W
.749
.748
.746
.743
.739
.732
.724
. 7U
.W

:%
.CQ7
.Ma
.K!3

:%
.m
. Ma

–:%
–. ‘w
–. 418
–. 594
–. m
–. 977

–1. 177
–L 374
–1. w
–L 746
–L ~
–z C@
–2 249
—z 4ol
–2 548
–2 WI
–2 823
-2067
–3. w
-3223
-3.351
–a 478
-3. m
-3.729
-3.854
-3.979
-4. lW
-4.236
-4.355
-4.480
am
-4.7W
-4.855
-4. EEll
-h lct5

Y

1.Ca2
1.m

::%
1.m
1.m
1.cm
1.au
L all
L all
L m
.W9
.907

:E
;%

.ml

.658

: ?7
.ss5
.818

:2

:%
.4n
.301
.220

-: E
–. 2&3
–. 451
–. 6s!3
–. 8E0

-1.105
–1.324
-L R2
~: ~

–2. a34
–2 247
–2 403
–2 551
–z m
–2 m
–2 w
–3. 037
–3. m
-23N
–3. 473
-3W3
–3. 729
-% m
–3. 97a
-L 103
-4.239
-4.353
-4. 47E
-4.6m
-L728
-4.8B
-4.978
–h lm

-2 Cal
-1..576
-1,750
-1.625
-L Km
-1.376
-1. ‘2&3
-1,125
-L m
-.876
-, 7&l
-, m
-, w
-.376
–. 253
-.125
0
. 12s

%%
.!ml
.025
,7fLl
.876

;: E
L ‘X4
L 376

;: E
L 7&l
1.876
2m
2126
22cJl
2376
lm
2025
2.750
2.675
3.m
3.125
32UI
3.376
3.m
3.626
3,750
3.875
4,m
4.125
4.2EU
4.375
41YM

2%
:%6

L 126
h250
h 376
h5m
&m
&762
&876
am

-3.078
-x T27
-3.477
-z 227
-2677
-2727
-2477
-2 m
-1.977
-1.727
-1.477
-1.227
–. 977
–. 727
-.478
-. ma

.CQ2

.no

. Cilo

.734

1:%

;:%

%
L w
2096
2226
2347
2461

?%
2749
2828
2m
Zeol
~ 0~6

3.105
& 139
3.1C3
3.191
3.211
3.m
3.23E
3.249
km
3.26t
3.2@a
am
3.276
;g

3.m
3.286
3.267
3.2s3
%2ml
3.201
3.203
z 208
X295
3.297
&’2J9

-o. SW
-. m
–. m
–. ‘Jw
-.829
–. W3
–. m
-. W7
–. 9$7
–. W6
-. W3
~. S-a&

-. W
-. Em
-. w
–. 072
–. 955
-. ml
–. WI
–. 675
-.8-55
-.843
-.840
–. 848
-.869
-.893
–. 631
-. en

-L cm
-L lm
-1.177
-L m
-L w
-1.447
-1. m
-1. w
-L m
-L KM
-2 m
-2 In
-2246
-2356
-2492
-2.017
-2741
-2 &35
-2 m
-% U5
-3.240
-3.365
-3.4’23
-3. as
-3.740
-3.885
-3. Qml
-4.115
-4.240
-4.305
-4.496
-4.615
-L 740
-Am
-4.$$3
-h 115

-2.978
-3. m
-3.478
-3.223
-2977
-2 m
-2478
-2223
-1.078
-1.728
-1.478
-L m
-.979
-.732
–. 482
-.235

.Ou

.254

:%

1:E

%
L 076
1.840
L 995
2143

M
2535

2%!
2.847
2%32
2.Kr3
3.076
3.134
3.184
3.227
X283

NH
3.s37

;=

%3s
3.3s9
X&al
3.3%3
2.401
3.401
3.406
3.4a9
3.410
3.42
3.413
3.415
3.416
3.418
3419
%4!20
3.422
3.423

-a 748
–. 748
–. 748
-.748
–. 748
–. 748
-.747
–. 747
–. 747
–. 747
-.746
–. 746
-.743
–. 741
–. m
–. 723
–. 723
-. n5
–. m
-. EW
-.070
–. m
–. eel
–. w
–. ea4
–. no
–. 747
–. 7tU
-.849
-.914
-. Ea3

-1.073
-1.104
-L m.4
-L w
-L 481
–1. 623
-L ns
-L 841
-L W6
-1 m
-2219
-2347
-2476
-2 em
–2 m
-z m
-2. w
-3. ma
–3. m
-3.361
-a 487
-3.612
-3. m
-3.863
-3. w
-4.113
-Am
-4,3@3
-4.489
-4.013
-4739
-4.8m
+.@a
-h 123

-3.978
-3. 72s
-3.478
-z Z2
-2978
-2 i%
-2478
-z m
-L 078
-1.723
-L 470
-~. g

–. m
–. 48s
–. m

.au

.243

.477

:E
L 12s
1.327
1.518

t P5
z Oa
z W3

%
%021
2741
28s3
296s
3.oi7
3.123
3.I@
3.26U
& 313
3.357
3.3s3
X423
&447
3.4M
3.481
3.4W
3.W
3.510
3.516
Xmn
3.524
L527
3.529
3.ml
am

2%
35Z3
3.64a
3.541
3.6!3
a6i4
3.546
3.547
3.MS

A

-a 4W
–. 4s3
–. 4CC3
–. 4m
–. 4cr3
–. 4E3
–. 4E3
–. 497
–. 497
–. 407
–. 406
–. 4%
–. 4%6
-. 4W3
-.491
–. 487
–. 4s2
–. 476
–. 463
–. 46s
–. MU
–. 4ol
–. 470
–. 484
-. 6U
–. 546
–. m
-. M
–. 7UJ
–. m
–. S37
–. w
-1. m
-L 170
-L 286
-L 407
-L E33
-L O@3
-L 704
-1. W7
-2 ml
-z 183
-z 32a
-2457
-2 E&9
-2 n9
-2848
-Z 976
-x 101
-x 231
-a sa
-3.484
-3.010
-3. 72a
-3. sol
-x W16
-4. lU
-4.237
-4.362
44s7
-4.012
4737
48m
+.&m
-h 112

-3. m
-3.728
-3.476
-3. m
-z 978
-z m
-2478
-2223
-L 978
-1. m
-1.479
-L 224
–. ‘%32
-.734
–. 487
–. 242

.m

.239

.472

:E
L 136
L 343

;E
L 918
z 09i
2X22
2422
2.572
L n3
Z844
2.W
3.074
3.172
&m
3.332
3.3W
3.4m
3.491
3.532
3.559
3.6s2

:E
Z&
3.!333
S.@
X 6i4
%6i8
se-n
SW
3.W5
3.657
3.o&J

:H’
X658
X695
am
3.6$3
3.w
3.6nl

k%

-6.248
-.248
–. 248
–. !448
-.248
–. 2X3
–. 248
-.248
–. 2%7
-.247
-. 2%7
-.247
–. 246
–. 245
-.244
-.242
–. 240
-.239
-.239
-.239
-.244
-.254
-. m
–. 205
-.323
-.370
-. 4Z3
-.485
-. m
-.042
–. 735
-. m
-. ‘WI
–L 070
–L 197
-1.329
-L 4&3
-L 605
-1.746
-L m
-z 028
-2107
-2305
-z 4U
–2 576
-2703
-!2 w
-2 ‘a71
–3. Im
-3. a
-a 356
-% 482
-3. 6a3
-3.734
-z m
-% w
-4.110
-4.225
-4.303
448s
4010
4735
-4.8@l
-4.%36
-5.110

4978
-3.723
-3478
-3. ma
-1978
–z 723
-2478
-2228
-1. 97%
-1. m
-1.479
-1. m
–. w
–. 734
–. 487
–. Ml

.m

.246

.:%
.950

1.177

k%

H%
2!236
2415
2m
!27@a
2%39
&ml
3.219
3.344
3.465
&w

:$

3.792

2%
3.886
3.879

;%
3.s8
%Wl
3.W3
3.W5
&wo
& EQ7
&m

: Wo
3.911
3.912
%914
3.916
3.916
3.918
3.919
2.Rm
2.922
3.923
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TABLE 111-DI13TR~UTION OF VELOCITY q AND FLOW DIRECTION 0,IN TRANSFORMED
FOR EXAMJ?LE IV (ELBOW WITH LINEARIZED COMPRESSIBLE FLOW)

-11/6
-10/6
–9/6
-8)3

:;2
-6/6

-am
-w
–Om

m

%
4/6
w
w
7/6
w
916

10J6
11/6
m
w
14J13
15/6
1W6
17/6

;%
20)3
W6
m
m
24/6
2&f6
m.
2703

s%
w
aw
a2J6

%
W6
W’6
a7f6
m

M
W6
K4f6
48/6
44/6
446
4@3
47/6
496
49/6
mfi

0-4009
.4m9
.m
.4!wa
.4m9
.4m9
.40m
.4539
.40W
.4U69
.Kma
.4009
.4672
.4243
.449
.47m
.mw
.6415
.5732
.mm
.6329
.6m2
.6s55
.7M3

:E
;%

. %76

.TJm

. ml

. mls

. Ems

. Ems

. Ems

. Wls

. 8)18

.mls

.8118

.~18

.Wls

. 8)18

. mls

.mls
, S)18
. .mls
.EOls
. .W18
; ml;

.801s

.mls

. Slls

.Sn8

.ala

.S)18

.mls

.SN8

. S318

.ala

.S018

.ala

##*-PLANE

o
.01
.01
.02
.6a

:H
.14
.24
.40

ig

Hl
4.00
a__

G%
–7. 48

-1L86
.—1&m
–19. M
-24. m
–a 46
–24. 46
-29. M
-44.76
–a 62
–E 27
449
–6a. 53
–70. 32
—74al
–7a 97
–82 m
–m. B
–a a7
–a 07
–94. 40
–m. 29
–Q1 w
–99. u

-lW M
–101.47
-10218
–102 73
-10314
–ICR45
–m. ml
–ml a
–103.w
-103.97
–104.m
–NM 08
-1OL 04
–lC-L 06
–164 w
—104.w
–104.02
—10’Lcm
–164 m

UcU&

.4039

.4010

.4010

.4011

.4012

.4015

.4019

.4U!

.4041

.407Q

.4141

.m

.4444

.4654

.4m2-

.5118

.mm

%x!

:%%
.K446
.64m

:E
.m.u
.m%
. ml
.7046
.ivm
. n%
. 71&0
.Ta45
.Z311
.m
.74&4
. 7.5s3
. 7&31
:%

.nm

.781a

.7MS

:%%
.7946
.7936
.79s2

:E
aJIJ

.Em4

.S)15

.S)16

.8)17

.8317

.Em7

.S)17

.S018

o
.01
.01
.02
.(!3
.04
.07
.12
.23
.38.
.57

ifi
Li7
L46

–i g
-x 4a
–a 23
–9. 48

–la. I!4
–17. m
–2L a
–% m
–m. 47
–35 al

-Zz
~~ 4J

–60. 72
–65 m
-70.46
–74. w
–n 15
–83 01
–a 48
–Ea 53
~9223
–94. 57
–93 64
–a m
–m. M

-ml 67
–1OL 57
–102 26
–102 Ea
–ml m
–ma. 49
–163.E23
—16333
–108.92
-laz S3
–104.01
–104.m
–10’L 6s
–16L CM
–10.LCM
–10’L w
–16L 62
–1OL 60
-104. w

o.4om
:%

.4010

.4011

.4012

.4015

.4019

.4026

;%J

.415a

.4MI

.4377’.

.46M

.Wa

.4%7

.m24

.51E3

.m40

.W2

.mla

.6782

.5s7

: Ea
.Cm4
. m46
.Sml
.6237
. @lb
AJ9J

.6513

:%%
. m47
.7W7
:%

.7482

. 7s32

.7U

.noz

.7772

. ml

.7ES0

.79ZI

.m

.797a

.mm

.mm

.EOM

.mu

. .mla

.8016

.SQ16

.8)17

.m17

.S117

.S)18

o
.Cm
.01
.01
.01
.02
.04
KrJ

.17

.27

:E
.24

––i $
–Z 16
–&24
–&01

–lL 10
–14. 57
–x3 a7
~g #

–aL 22
–36. 08
-4a 89
-4686
-a ‘m
–55. B
–Q. 03
–65 m
–n. 8s
–7h 48
–m. m
–m. m
–67. 07
–m. 15
–92 m
–8s 09
–97. @
–!R 62
–m 84

–IOL 01
–ML 83
–102 61
–m. 00
–m. 87
–lo& 62
–103.79
–lm. w
–MR. 97
–1OL 01
–104.08
–104.06
—10405
–16L m
–16L 0?!
–164 00
–16L 60
–w. 06
–104.w

am
.4W3
.4010
.4010
.4011
.4ola
.4015
.4020
.4027
.4CG9
.40!4
.4CFN
.4X39
.4227
.4235
.4am
.406
.4621
.4734
.4844
.4947
:6J’4J

.6210

.52SI

.m4a

.mm

. M47
:%

: E7
.57m
.6s40
.mn
.6188
.6818
.e-lw
.m76

:%%
.7177
.7%U
.74Q
. 7&M
~~

.T325

.78E3

.7m7

..7W3

.m3f4

:%
.m
.mla
.Ems
.EJ116

, .8016
.m17
.m17
.Ems

o
.00
.00
.W
.Im
.W
.Cm

–:!!—.a3

::
—.40

––i $
–292
+.62
–&76
–9. 86

–1234
–M. 70
–lQaa
-2s. 84
–27. b2
-32 w
–8a 62
-4L611
-4&Xl
–5L 80
–ma6
–a. 47
–m. m
-n 49
–76. 21
-m. 50
-% 67
–s% 08
–9L 14
-’a 75
–w 97
–97. E2
–6Q 24

–m. a
–1OL m
–102 33
–102 m
–lm. 34
-m. 64’
–lCR B
–163.95
–1OL 02
–MM.a5
-164 C8
–16A M
–16L CM
–NM M
–16+ 07
–104.07
–104.07
–1OL 07
–16L 07
–16L 07

cL4cK&

.4010

.4010

.4011

.4012

.4014

.4018

.4m4

.4m3
;=

.4164

.4148

.4202

.426a

.4223

.4408

.4472

.4s39

.4W

.4M9

.471’1

.4769

.4ml

.4$38

.W?a

.4PM

.4s31

.4ml

:%%
. mu
:=

:%
.6W
.mls
.6640
.6763
.6!242
.71a5
.Z301
-7449
. 76s0
. 7ml
.778s
.7886
.7917
.7967
.7W
.7037
.moa
.mlo
.Ems
.m16
.S016
. f017
.8017
.m17
.W18

o

+%’–.01
–. 01
—.02
—.04
—.
–.%
—.20
—.D
—.s

-- E
–2 m
–8. m
–66a
–7. 76

–la m
–13 22
–16. 49
–m. 00
-m. a9
–a 12
–32 49
-37. OJ
4L 77
-46.64
–6L 53
–m. 72
–6L 91
–137.la
–7287
–77. 86
-8L E3
–f4i 02
–w 55
–92 67
4J g

–siw
–m. 84
–1OL 46
–1U423
–lea w
–laL 47
~;~ ~

–16L12
–lM. 16
–164.16
–104.14
-IC411
–104.09
–104.68
–164 m
–lo-L 07
-16L 07
–NM 07
–104.07
–104.07
–DL 07

% I 1.0

&4cea
.40C9
.4X4
.4010
.4010
.4011
.4012
.4014
.4017
.4622
.m
.4642
.4068
.4am
.4C.2
.41a6
.4167
.4206
.4232
.4!EU
.ml
.4317

:$

:n
.4427
.4440
.44m
.4477
.4616
.4ms
.4746
.4948
. Elm
.E4m
.mza
;=

.edm

.6760

.m

. n78

.7867

.7616

.W1

.n64
:%

.Tw

:g

. son

.S)16

.8016

.ml?

.m17

.8017

.W17

..5018

e

o
–. 01
-.01
—.02
—.m
—.04

::
–. 18
-. al
-. m

–7 ;
-2.07
–a. u
-4.46
–e+ 21
–&a

-m %
–la. 74
-16.07
-m 62
–!2487
-23.46
~~ :

-4i CM3
-46.86
–61. M
-m. ‘m
–62, %
-67.79
–7& 46
-7a 91
-88. m
–89. 01
-9L 66
-w 48
-m. s3
–’w 83

4&g

~;g $

-108. e3
–104.18
–MM.a9
-164.48
-104.49
-104.42
–MM 23
-124.23
–IOL 16
–104.12
-104,10
–1OAC@
-164. m
-1OL 07
–104.07
-1OL 07
–104.07
–104.07

o.4m9
.mm
.m
.4009
.4006
.40c+
,4W3
.40m
.4m9
.4W9
.4m9
.4cOa
.4om
.4WU
.4009
.4009

‘%
.4000
,4m9
.4wa
.4aPa
,4cm
.4cm
.4m9
.4m0
.4009
.4cm
.4mo
.4W
.4m0
.4m9
A&

.44m

.4780

.m’l

.6415

.6732

.6ma

.mm

.6m2

.6356

.70%6

.7X3

.74n

.7636

.7766

.7676

.706a

.EzQl

.m18

.E018

..9318

.S118

.E018

.@18

.Sols

.Ems

.8018

.Ez118
,E018

o

0
-.01
-.01
-.
-. ~
-. 06

:!J’
-.
-. 84
-.

u
-i: 46
-z n
-a. B
-466
-&u
-a 62

-11, M
-18.01
-17, la
-m. 07
-24. 9
–m. L
-3280
-37.40
-42. M
-41LRI
-6L W
-67. M
-m 44
-6S. 16
-74. M
-a, m
-W a
-w. 09
-CM.10
-w R1
-$9<11

-100. F3
-102.17
-X4. 19
-m. 06
-104.49
-104.84
-1OA 03
-m& 10
-N& 05
-lQL 91
-164. n
-164.49
-KM, 28
4%;:

-1OL 10
-104. c-a
-104. m
-NM 07
–1OL 07
-104.07
-KM. 07
-104.07

. . . ..- -..—-—- ---
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TABLE IV—DISTRH3UTION OF PHYSICAL COORDINATIJS z AND y IN TRANSFORMED ~~*-PLANE FOR EXAMPLE IV
(ELBOW WITH LINEARIZED COMPRESSIBLE FLOW

[~ variationln Q with 131Uk3th8d0WdD3mld Wdk3Ph3ttdjnfl& Z Q.-OA, 0#-LO, g~.O.80176,A$*-O.~ M.16LOP]

-11/6
-10/6
-9/6
-8/0
-7/6
-6/6

>51:

=%
-;/6

%
3/6
4/6
6/6
0/6
7/6
8/6

l:fl

;V6
13/6
14/6
16/6

;%
Iw

Mfi
21/6
m
23/6
24/6
W’o
m
27/0
2S/6

%’\:
31/6
32/6
33/6
34/t3
25/6

%
m/6

%
41/6
42/6
43/6
40/6
46/6
40/6
47/6

XB
@l/6

o

z

-2.4MI
-2241
-2016
-1;791
–1. EM
-1.341
-’ :;

–. 0!33
–. 41
-.216

M
.4EJ3
.6.54
.861

1.CL?3
L206

i:%
1,w
1.m

;%
2167
2 ml
23&3
2443
2621
2 WI
2W
2 ml
2743
27n
2.W3
!2E.al
1831
2836
2634
2827
2817
Zsca
27%s
27e8
2744
2721
2697

H%
26m
2683
2M6

%
2484
2467
24?4
24G2
2376
2.248

:%

v

-o. 7Kl
–. 76a
–. 760
-.769
–. 7@
–. 76s
–. 7&9
–. 7e8
–. 767
–.760
–. 7@3
-. 7@l
–. 762
-.739
-. m
-. m
-.764
-. m
-. no
-. m
-.740
-. m
-. m
-. m
–. 6%
-. 9%3

–L M4
–L 143
–L 22%
–L 318
–L414
-L 614
-1.619
-1.723
–L &M
–1. 947
–2 am
–2 m
–2 ‘.%3
-1 3m
-2 6(I3
-2619
–27al
–’2 841
–2 w
–3. m
-3.172
-3. 2s1
-k 301
-3. m
-2W9
–z no
–2. m
–3. E37
-4646
-4166
-4. m4
-4374

2%
-4. 7Q1
-4.810

z

–z 4M
–2 241
–2 016
–1. 791
–L m
–1.341
–L 116
-. m
–. em

.–. 443
–. 219

.C03

.223

.439

.646

i%
L 213
ysJ

1.704
L=
1.W4
2124
2%7
2243
2484

2%

:%
2838

::

:%!
x m.
&m
28m
2US4

;E
2031
2m3
28ss
2862
2W4

%
2766
2na
2 ml
26m
2 M6
2 em
2691
2664
2s37
2609

:%

u

-Cl 612
-. m
-. m
-.612
–. 512
–. 512
–. 512
–. 611
-.611
–. 610
–. m
-. w
–. W
–. 404
–. 4s3
–. m
–. w
–. 492
–. m
–. 629
–. W
–. WI
–. 649
–. m
–. 772
–. 847
–. m

–l. o.m
–L 117
–1. m
–1.233)
–L 443
-L W
-1. ml
-L WU
–L 926
–2 048
-2169
–2 m
–2 409
–2 627
–2 048
–2 753
–2 872
-2 f&s
–3. (07
–3. m
–3. 319
-X%

–3. 649
-3.759
-L W3
~a 977
-4. tB7
-4.103
-4.306
-4.414
-4.623
+532
4741
-4.851

–24@a
–2 m
~: ~;

–L WI
–1.341
-L 117
–. m
–. W3
–. 444
–. m

.m

.219

.424

.M3

i%
1.m
1.411
1.6s8
L 7E3
L 913
2W.5
2!m
2?43
2473
2691
27m
27W
2ss6

:E
3.076
3.117
& 147
a 167
a 177
%ml
a n7
3.153
%166
&m
3.119

:%!
L049
3.024
.2W3
2971
2044
2917
28m
2862
2m
2m
27W
2763
2nn

:%!
2044
26U3

-0, ‘m
–. m
–. ml
–. m
–. 2M
–. 2b9
–. m
–. 25s
–. 266
–. 264
–.264
–. Z&2
–. Ml
-.240
–. m
–. !253
–.231
–. 274
–. 2J.5
–. 325
–. m
–. 410
–. 463
–. 532
–. m
–. 0k3
–. 787
–. Em

–L WI
–L 117
–L 240
–L W
–L 601
–L 633
–L 770
–1. m
–2 m
-Z 169
–2 297
–2 423
–2 m7
–2 663
–2 787
–2 m
–z 019
-&133
–3. 246
-3. 3.W
–% 460
–x 679
–% ma
-am
–3. m
-4018
-4127
-4. !MO
-4346
-4466
-&W
-4.673
4782
-4. &Jl

z

–2 466
–224
–2 016
-L 791
–L f.53
–L Ml
–L 117
–. m
-. 0E3
–. 444
–. !231

.m

.219

:E
.%5

;%
1.44s
L m
1.m

i%
2W4
2433
26k3
2723
2843
2 e52
2.c49
3.132

i%
3.m
3.2s3
&w
%252
a283
a367
2.346
3.333
3.311
3.2s9

:%
3.as

2$
& 134
3.107
3.079
3.W
3.024
2W7
2973
2642
2916
;%

2533
2.s03
2778

)4

u

0.001
.WI
.ml
. WI
. cm
.all
.@ll
.031
.001
.ml

:E
–. ml
–. m
-. m
–. 016
–. 02!3
–. 619
–. 076
–. 111
–. LM
–. Zlo
~. 274
–. 349
–. 436
–. m
–. m
–. 761
–. 876

–l. W7
–L 146
–L ~
–1. 43$
-1. .5%
–L 737
–L 883
~: ~

–2 m
–2 440
–2 m
–2 695
–2 m
–2 m
–3. 0.55
–3. In
-3. ?84
–a 307
-2m
-2619
–3. 730
–2. SW
–3. 949
-4.068
* les

. 4277
4386
-4.496
-4W4
-4. n3
-4. &Z3
4932

z

–24e0
–2241
–2 016
–L 791
–L 6&3
–L 341
–1. 117
–. 802
-. 6E3
–. 444
–. m

.WIZ

.2U

.441

.057

i=

$%
L ml
1.m

:%!
240s
2539
272a
2W4
2.W9
%H8
3.226
a 317
3.30s
2.4m
3.ml
x E31
&64s
3.654

H%
3.627
3.m

2%
3.436
3.4W
3.2s1
3.3.23

%
am
3.241
3.214
alm
3.169
3.En
3.104
&on
& 049
&on
2994
2W
2940

v

:%7

.267

.2s7

:%
.257
.250
.2M
.2%

:E
.!MO
.246

:Z
.m
.184
.163
.112
.531

–:%
–. lIM
–. 251
–. 337
–. 476
–. m
–. 743
–. m

–1.046
–L 213
–L 374
–L Ml
–L 737
-L m
–2 623
–z 177
–2 322
–2 ml
-2 6s6
–2 7.23
–2 851
–2 973
–3. m
–% m9
4s24
–3. 437
-3.649
-L Ma
–a 770
–&m
–x m

. :%

-4.428
-4. s36
-4646
-4.764
+.W3
-4972

z

–2469
–2 Ml
~; ~;

-L W
–L 341
–L 116
–. 83-a
–. M7
–. 443

‘–. n9

:%
.446,
.670

i%l
L 318
L629
1.737
1.940
21m

: F7
2@4

:%
3.lea
L2W
3.U6
& 5M
lam
3669
z ns
3.743
3.766
a 7M
& 747
3.732
am
3.W4

2E
3.E03

HZ
3.518
%489
%4@l
&m

? ?6
X348
3.3m
3.2’Z3

;~

iE
km
3.101

%

u

0.613
. ma
.613
.613
. m3
.613
.613
.ma
.m
.611
.510
.m
.m
.4M
.4/?3
.4il
.462

:%
.344
.2s2
.m
.142

–: E
–. 173
–. 304
–. 447
–. 601
–. m
–. 640

–L 122
–L m
–L 4%3
–L 6SU
–1.8$s
–2 027
–2 189
–z 342
–24s7
–2 623
-2786
–2 .ss
–3. Olz
-z 133
–3. m
–x %
–x 479
–3. 661
–a ml
–3.811
–3. Wl
-4. Cuo
-4.139
-4.249
-4.3s8
-4.467
-4.676
-4. @5
-4. ?W
-4.023
–h 01s

LO

z

–24M
–2 241
-2016
–L 791
-L W
–L 341
–_Ill;

–. m
–. 441
–. 216

%
.4b9
.m.l

i%
1.356

2%
2013
2225
2434

2%
3.013
x 186
3.340
x 4R?
&m
3.736
3.s36
3.‘all
%%7
3.mO
.3.974
XW9

2%$
3.m
LS71
3.841

H%
3.740
x n4
x@s
3.W
3.6?3
afm

w
& Slo

. :%

3.427
3.403

w
3.318
3.ZXl
3.233

u

0.770
.772

:!%
.770
.769
.766
.766
.753
.767
.705

:%
.761
.740
.7?2s
.m
.674
.626
.m
.627
.465
.Z38

:%
.024

–. m
–. 278
-.449
-.632
–. 826

-L 030
–L 242
–L 46.5
-L 601
-LK.S
–2 cm
–2 m
-2369
-2 m
-2 m
-2789
–2 Ei9
–% M6
–’l 170
–x 234
–a 409
-x 62a
–.2 m
–x 744
–3. m
–3. w

ZE
-4. m9
-4.3W
4M7
-4.617
-4.723
+.&w
-4.944
–h cm

o

,
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TABL13V—DISTRIB~ION OFVELOCITYgANDFLOWDEtECTIONeIN TRANSFORMEDp#-PLANEFOREXAMPLEV (ELBOW
WITH COMPRESSIBLE FLOW (7=1.4)) ‘

-M WtIon JnQMm m 14 J@ dmnndv’db Plottdh l%.!%%-0.5,Q4-1.0,qi-o.wm?’,A+=O.74WA6-lm.31”]

o % 1.0

q

am
.3W0
.3+W3
.Wao
.Wm
.s$96
.38s%
.3W0
.3396
.3033
.mm
.3VN
.3m3
.3W6

:%3
.33X3
.3$W
.29W

:%%
.36M
.3W6
.3%90

:%
.3W3
.Wm

:%!
.3W6
.3W0
,4W3

:%%
.4W0
.6162
.5469

:%
. M41
.6717
.m70
.7407
.7339
.7673
.7719
.7W

%J

.m

.7’4?33

:%
.7W3
.m

o 8 8 Q e 8 e

o.3wa6
.39%3
.3s96
.3M6

:%%
.3%
.3693
.3$96

$%
.Sw3
.3m6
.4W

:*%
.As2a
.6102
.5493
.5?23
.6144
.6444
.6717
.W70
. n97
.7WJ
. m73
.7719

;~

.Tm3

.7M3

:%
.7’6$3

:%
.7WQ
.78J3
.7W
.Zm3
.7893
.7893
.7’W
.7M3
.7W3
.7W3

:%%
.7833
.7W3
.7m3

:%!
.7993
.nm

o
.m
.O1
.O1

:%
XIJ

.15

:E

1: z
313

:$
x%

-k E
-L 0.5
-a w

-1% 3a
-17. ‘m
–22 S3
-m. ol
-3& 34
-38.74
-4423
-49.84
-&u
-a m
-In 35
-74.43
-7019
-8a 67
-8L MI
-m. 32
~&g

–W 70
-w. @

–lal 34
–1OL 64
–102 6s
-103.48
–1OL m
–1OL ’53
–16L E3
–105.04
–103.16
–165. ‘a
–105 xl
-10s x
–105.w
–105 31
–Km 34
–105.34

Em
.3s97

:%%

:%
.3Q%3
.4m

..4CM

:E
.4030

:4%
.4275
.4464
.4687
.492s
.547.5
.5419
.56.52
.mn
. m74
.mm

:%%
.M06
.6sm
. 6s!1
.EUn
.7019
.7’W3
.7410
. 71m
.7234
.7m2
.7$33
.7442
.7546
.7537

:%%
. 77fm
.7847
.7%s3

:%%
.7915
J’#

.78s3

.7s37
:~

;W#

.7’8Z3

o
.al
.O1
.01

:%
.04
.m

Umm
.W97
.mw
.3%)7

:%$
.4UYI
.4M2
.4W
.4014
.4026
.4047
.4m9
.4152

:%
.4b47
.4719
.4s35

:%
.53W
.553%
.CU@a

:s
..5378
.m.m
.6123
. m82
.6238
.6m7
.W

:%%
.M’?.4
. 6S46
.m52

:%
.7342
. 74M
. 76W
. 76?J
.m
.7W
.7%6
.7904

.:%

.7W3

.7’EW

.m

.7W2
;%

o
.O1
.m

:fi
.02
.U.3
.04
.07
.12
.18

%’
..46
.24
“48

-–i 74
–3. 64
-&lo
-Q CE3

–12 53
~g g

-2512
–’m. 87
–34. w
+%3
-M 25
-a 62
–w 04
-6L44
–66. 76
-ns
–76. 73
-8L 27
-85. 3s
-m. 97
–02 17
–9L ‘m
-97.24
–w. 14

–lU n
–IOL 97
–l@ 97
–la 72
–1OL 23
–104.67
–1OL %5
–16s U
–lCEL22
–105.m
–165 m
–105.w
–lo& a
–105 34
–105.31
-10331

0.3W6
;g

.3m7

:%%
.m
.4039
.4#3
.4016
. 4om
.4049
.4m
.434

:%
;%

.4643

.4762
:=

.So7a

. 54ed

:%
..5376

:%
.&@
.5’573
.5333
.S7m

:%%
.6145
-6327
. &516

:E
.mrl
.7223
.7376
.7m2
.7617
.7746
.m

: F4
.7848
.TXa

:%

. ;g

o
mJ

.Im

;{

.0)

-: {
—.

z;
–. 46

–-E
~: y

–7. 61
–la m
–l&82
-17. b4
–n. 64
–25. w
–al 62
–w 48
+0. 52
4K 72
–5L 03
–Ea43
-6L 35
–67. 25
–72 m
–77. ELI
–m. 14
–m. 27
–a 61
–RIM,
–w Ta
–97. 84
–8a. 77

–104.25
–102 43
–103.34
–1OL 03
–104.63
–104.87
~}& ~

-lo& m
+g g

–lchl 31
–lo& 31
–lM 31
–lM m
–105.31

aaw6
.3737
.3s97
.3W7
.mm
.WB3
.4am
.4cm4
.4033
. 4m2
.4022

%l%J

.4144

.m

.4ma

.4340

.4413

.4435

.46s4

.4M8

.4677

.4730

.4777

.484s

.4W

.4s33

.4918

.4951

.4WXI

. W47

. mw

.6274
. mE3
.5362
.5m2
.6429

S&j

. 7m9
.. m

:%
.7648
.7754
.7s6

:%
.7970
.7%32
.7%57

:%%
.7’s92
.7’W3

o
.m

–: M-.—.L%—.-.8—.–.E—.—.g
–TCD
–1. 84
–289
-4.35
–t m
–8. m

–U.49
–14. 74
–1& 37
–22 34
–x m
–3L 18
+3h %
-40.84
-4& co
–m. 37
–m. 80
–62 30
–67. 87
-7a 42
–7a w
–m. 48
–87. 72
-94.39
-94. u
–f% M
-m. 04

-103. n
–102 cm
+% g

–164.47
-1OL 8s
–W. 14
-lW !N
–16.536
–lU 36
–105.34
–lo& 33
-IM 32
–lo& 31
–lo& a
–K& 31
–lo& 34

Cm&

.3W7

.3937

:%i
3&

.4C02

.4m5

.4011

.4019

.4U31

.4049
-4072
.4039
.m
.4164
.41’Z3

:%
.42%3
.4319
.4343
.4384
.4m3
.4433
.4446
.4429
.4446
.44F8
.4m7
.4m5
.47.53
.4om
.~

- %?4

:%

:%%
.7070

:%
. 7EW
.7726
.7823

:%
..7977
.7W3
;%

.7W!

.7s43

.m

o

-: i’!-.ol
-.
-. %
-. 04
-.-.$
:3-.E–743

–z 3)
-X 46
-4.97
-L 62
–9. 23

–u @
-M !23
-1& 86
-2279
–!47.02
-31.52
-3026
-4L m
-4& 23
–61. 61
-57.07
–62 w
-68.67
–74. 56
-m. 36
-S& 46
~g ~

+%29
-m. 65

–lcn 62
-lm. w
-lm. 13
–lm w
-104.61
–lo& 05
-lM ?a
–lo& 49
–lo& 61
–Km 62
-lo& 46
-lCW 39
–105.35
-105.33
–lo& 32
–105.31

:~~:;

o

-: i’
-,01
-. m
-. m
-. 05

:.!?
-.
-. H

-i z
-1.01
-2.40
–&64
-h 17
-7. la
-0.49

-12.23
-lh47
-19.03
–2291
-27.16
-31. Is’1
-w 30
-41.30
-4& 41
-61.70
–57. 18
-0280
-59.97
-70. G9
-m 69
-Ea m
-92 Oa
-Oa 11
-m. 76

–lm 82
-10230
-103.67
-104.46
-14W 07
-165.49
-Ml& 7b
-105.87
~\& 3J

-lea 71
-105, bo
-105.41
-lob 35
-1054?3
-lo& 32
-lea 31
-lo& 31
-la& 31

.13

:E

1:E

. ;:%
L 54

–i %’
-4.11
–7. n

–lo_ 92
–14. M
–19. 38
–2L 06
–% us
–W_ 09
–D. 3s
474
–50. m
–= 70
–6L 13
+45–n.a
–n 34
–alm–8Lm
–m.47
–94. ml
:% ~6

–9% 78
–Kn 40
–1OL 72
–102 75
–lm. M
–1OL 14
–1OL 56
–1OL MI
–ICE a5
-105.17
–16.5.24
–106.27
-UM. m
–lCK a)
–KG. 31
–lm 31
–lCK 24

.
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TABLEVI-DISTRIBUTION OFPHYSICALCOORDINATESz AND v IN TRAiiSFORMED+PLANE FOR EXAMPLEV (ELBOVJ
~TH COMPRESSIBLE FLOW (7=1.4))

[Fresailmlvwi!atloninOwith81’ukm8tht along chmmd W&S Nottal in IIS.Z 0.-0.6, od-1.o, @EO.7S927, A#-O.71CW, A6d35.31q

-12/6 -2832 -o. no
-11/6 –26’a5 –. 776
-10/6 -z 369 –. no
-9/$3 –2 122 -.770
-8/’6 -1. &% -. m
-7/6 -1.648 –2 m
-0/6 –1.411 –. 769
-m –-: &4 -.7W

–.769
-3/6 –, 761 –. 7ea
-w -.464 –. 767
-;/6 –. 227 –. 764

..m –. 7m
1/6 .245 –. 7m

.473 –. m
$ .6s3 –. n’a
4t6 .891 –. 7a5
g :.% -,697

–. m
7/6 1:424 –. m
8/6 L 691 –. 723

L m –. 766
l:jl 1.M7 –.m4
11/6 -.842
12/6 ;% –. m
13/’6 ~g –. cm
14/6 -1.040
146 2424 –L 122
16/6 Zm –1. 211
17/6 26m –L %
18/6 2642 –L 407

26Q4 -1.513
%’; 2.737 -L m4
21/6 2770 -L 739
22/6 2.704 –L&54
23/6 Z869 –1. m
24B z 816 –2 M9
m 2816 –2. m
23/6 2810 -z 3m
27f6 2799 -2444
23/6 2783 -2 m

271U -2678
%$ 2740 –2 m4

2 7-IS
%

–z 910
263E -x 026

m 2@l -3.140
84/6 z ml -3. 2%5
w 2 all -3.364
w –3. 484
37/6 ;2 –2. 623
3$/6 2604 -3. m
39/6 2477 -3. m
40/6 2446 –3. M
41/6 2416 -4. M6
w 2384 -4169
43/6 -4. 2s4
44/6 M -4. 3E3

I % I M I % I
r

–2 m
-26Q5
–2 Ww
-2 m
–L w
–1. 648
–L411
–L 176
–. 833
–. m
–. 469
7. m

.Cr4

:%
.677

l:E

H%
1.616
L n%

M
2m2
23M
2441
2645
26?$
2TM
2761

Ml

i~
2m

:K#
2978
2%36
2048
292s
2024
2s79
2861
2822
27%3
2762
2731
2 ml
2MU
2e3s
2m7
2676
2644
2513
2482

u z

-0.613 –2 m
-.613 –2 695
–. 613 –Z 368
–. 513 –2 m
–. 613 -L S6
–. 513 -L @48
–. m -L 411
–. 512 –L 176
–. 612 –. ‘w9
–. 611 ~.
–. 610
–. m –: g
–. cm
–. 469
–. 492 %
–. 486 .675
–. 482 .a?
–. 483 L 691
–. 462 1.m
–. 510 1.476
–. 637 LW6
-.674
–. @El ::@
–. 677 2148
–. 743 223.5
–. Em 2433
–. m 26h9
–. 9s9 2674

–L lIM 2778
–1. m
–L326 w
–L446 3.01s
–L 670 3.WS
–1. 697 3.107
–L826 3.136
–1. 9s3 3.162
–2 w 3.169
–2 212 3.167
–2 336 3.149
–2 463 3.136
–2 EM 3.116
–z m
-2 E23 w
-2047 3.643
–3. 034 3.014
–3. la 2B5
–3. 297 2QS4
–3. 412 2924
–3. 627
–3. 642 ;g
–3. 7&3
–3. m 27%9
–x Ws 2753
-4. Qa9 2728
-4.213 2m5
-4.323 2674
-4.442 2643

u I
-o. 2M
–. ma
–. w
–.2M
–. 2M
–. 266
–. 266
–. 2.58
–. ml
–. 266
–. 166
–. 254
~.

–. 249
–. 249
–. m
–. m
–. 279
–. 304
–. ?3
–. au
–. 433
–. m
–. m
–. am
–. 763
–. m
–. EM

–L lB
–L 233
–1.374
–L 514
–L W
–1.7%9
–1. 840
–2 m
–2 218
–23b3
–2 484
–2 61a
–2 739
–2 w
–z w
-3. KM
–3. 222
-3.339
–& 455
–3. m
-3.6s5
–3. m
–3. 916
-4. CQe
-4.143
-4.267
4372
-4.486

–2 832 0. ml
–2 695 .631
–23s3 .ml
–2 m .CB31
–1. 8s6 .031
–L 648 .ml
–L412 .031
–L 175 .cm
–. %39 .w
–. m3 .Mll
–. 467 .all
–.m .031

.COl
–: E

:3 –. 0)4
–. W9
–. 019

iE –. 036
L 314 –. m
1.613 –. m

-.134
+s% –. 182

-.246
:E –. m
23’33 –. m
2646 –. m

–. 612
M –. 732

–. 862
$.%! -1. m
3.Ils –L 147
3.191 –L 299
3.248 –L 466
3.m –L 614
3.319 –1. 772
3.% –L 927
3.w –2 079
3.33$ –2 ?i8
X325 –2 369

–2 &m’
E% –2 641
am –2 m
3.‘2a –2 m
3.!aB -3.622
3.178 –a 144
3.148 –3. !m4
3.117 -3. m
3.CM -3. 4E3
3.CW –L 614
acm –3. m
2861 -3. W
2HI –3. 669

-4.073
H%
2SM 2E
2.83s -4.416
Zm -4. Exl

z v

–2 m O.!ws
–2 W5 .26s
–2 m .26’3
–2 m .Us
–LS35
–1. 648 %?
–L 4U .257
–1. 176 .267
–. m
–. 702 :%
–. 467
–. 232 :%!

.W2 .m

.234

.m :%
.236

:%! .m
,1.133 .’iw
1.347 .172
L&Ed .135
1.760 .W3

;!E –:M
233 –. E6

–. 231
2% –. 330
2824 –. 462

–. w
2%! –. no
3.aM -.ss5
3.w –L M
3.331 –1. ‘ill
3.443 –L 3m
;= –L 672

–L 747
3.627 –L 917-
3.628 –2 a31
3SXI –2 m

–23s9 ‘
% –2 Ea
3.403 –2 672

–2 807
;$! –2 m
3.374 –3. W3

-3.lM
%! –3. m
3.279 –3. 426
a X7 –x 642
3.m –% m
3.184 –% 773
3.162 –a 8ss
3.121 -4. CQ3
3.m -4.117
3.0+8 -4.232
3.027 -4.346
29%5 -4.460
2%!4 -4.674

r

–2 432
–2 W6
-2359
–2 m
–1.M5
–L e-w
–1. 411
–L 176
-. m
-. m
–. 4e5
–. m

.Ca5

.240

.4n

.704

1:E
1.s?s
1.606

kE
2m
2437
2627
ZEJM
2074
3.129

w
3.ml

;%
3.m

:%
X724
z no
3.mTl
3.6%
3.@s
3.604
3.673

R#
3.474
3.441
*m
%376
3.344
3.313
2.2al
3.2!0
x 219
2.1s7
3.1s
3.125

u

0.614
.614
.614
.514
.614
.514
.614
.614
.M3
.613
.512
.510
.W
.532
.405

:El

:E

:K!
.262
.174

–: E
–. 146
–. 279
-.423
–. m
–. 762
–. 0!6

-1.133
–L 236
–1. 633
–L 727
–L 912
–z C@3
–2 253
–2 414
–2 E04
–2 m
–2 846
–2 m
–% la5
–3. 220
–x w
–x 4m
–% 687
–x 703
+ 818
-3.%2
-4. 6t7
-4.161
-4.276
-4.%9
-4. W4
-4.618

Lo

I

-2 ma
–26s5
–2 w
–2 W
–L8M
–L 648
-L411
–L 174
–. m7
–. ml
-.464
–. 227

.010

.247

.484

.Tal

1:!%
1.m
L6S9

E%

;%

%

HR
3.ECU
3.n9
3.816
3.4s7
3.029
LW6
3.944
3.923

M%
3.e46
3.812
3.n7
x 742
X767

w%
3.em
3.6m
3.637
ams
& 474
3.442
z411
3.291

w’?
3.2?a

am
. m
.m
.m
.m
.m
.m
.m

:E
.7ea
.7m
.763
.758
.740
.737
. n9
.693
.669
.6M
.b23
.4s3
.403
.333
.187

-: E
–. Us
-.4?4
-.629
–.834

–1. Om
–L n4
–L4W
–L n4
–L 916
–2 m
–z 281
–2 446
–2 em
–2 748
–2 m
–x 021
-3.160
-3.274
–3.3m
-& 616
–3. m
-3. 74s
–3. m
–x 977
4 @l
-4.2M
-4.319
-4.433
-4.648
-4.662

,
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TARLE VII-TABULATED VALUES OF THE INTEGR&LS a AND 6 FOR A RANGE OF l(@-@o)l

[Clompntatfonnlmeihods gfven fn apwnck G] .

“ u .

0.cm373
1(+4)

-o. 3WZ37
. fm3n ac@970 –. 2wr37 I

.txQ597
–o. 611@30

–. 214729
- 2(+0 .Wm70 –. 611660

.m –. 144746
3(+W .mw42 . Cdcml –. 7LW4M

. olL?359
–. 2MW1

4(+’0
–. Om’46

. 02?301 –. 864461
.021574

5(.124) .044675
–. M2a3’5

.aE37’6
. a314a2

–. O’3407J
–. I?3m44

6(./24). . 07E277 –. 94&uo
.042am

7(*4)
–. @JE316

.llEse7 .W7832 –. 934346
. a5W12

. Ow
—

8(ri24)
. Olm

.173909 –. W-s&a
. WS374 .m

9(7124) .?4ZE3 . 1.WW3 –. 4m3542
.ca2529 ‘

. lmsu
.@m946

lo(r/M) .32W2 –: 33.W6
.037324 . lEof97

ll(@4) .4Z2B3 . msl –. 76s389 . lsof61
.llm27 .W6s4

12(@4i . m47e3
.lZm35

-.666715
.llsa77

13(#24) W3W5 .m –. E&338 . 2W75
.144362 .133383

14(r/24) . 8074eJI –. 4W$fo
. lW .164739

lqrm) .f@oE=3 .w7’41 –. 24W01 .3m
. 177KU . 177J5M

16(7/24) L 14EtYIl –. m
. m725 . mm

17(r/24) L3s8623 . man .mw6.
. !4104@a . m7i74

ls(rpi) L54W9 .S24671
.’225221

19(r/24) Lm . bim .467$17
.2441Es .X&w

m(r/24) 2.om67 .n!M&9
. 26n41

21(./!24)
.2WM5

2232#3 .&39276 L052K13 . Im7NJ3
.218135 .mm

22(d24) 2 JYm43 L3ZW4 .
. X5161 .294435

f3(r/24) 26m04 .e07373 L CWOTJ .eJHs9
.312u2

. M@%) 3.167516
.311654

Lfr35@3
.32%2$3

!u@pl)
.XB3Fa

2.SW%9 . 67665!4 2234s6 . 674WI
.346369 .34m7

23(./24) 3.S431es 2610573
.243455 .%?3210

27(+4) ‘L!aMm . 744a36 2m . 7436s6
.L?sas7a

23(+4) 4E37m
.380375

3.3541bs
.397Bsa

2!3(./24) 4.sr34Ea5
.397.531

.8124S2 &mm
.414E01

.8UZL5 i

2a)(rp4)
.44634

SWm6 41W73
.43Ki22

31W24) 5.Sl@n .E#w7
. imw

4 mm

T

.Ssc#3
.44m45

32(./24)
.44$376

&2m352 5047LS1
.466173 .4M120

33(rt24) 6.745%4s .049474 h5f3301 .94mo
.4?s201 .4?3!MI

34(./24)
,

7.‘mm & wwil
.E.w431

35(+!4)
.5aucBI

7.730s57 L Olm &4Q3’MI L 017%?
. 517M2 . 617#3

W@4) & 248119 7.0144W
.a4a14 .ta4676

37(./24) a 7&m3 L@3W21 7.S49175 LCW4S3
. 5518!47 . 5s1612

a(dw !1334640 & lm
.66swa .aw

. 39(r/24) 9.’aEe03 L 150).53 &13K@s6
.IE6m

L 15fU34 .
:bsJm5

40(rp4) la 4mm R2w321
.603227

U(+4)
.6u12ul

lL @32W L2?36% e.sw441 L223576
. IEuKil

42(+4)
.6m456

lL 713W — -–1O.476.W7
.637406 .63’7492

43(./24) 123m77 Lf&21X % llm9 L 2%2116
.U4629

44(+4)
-.634620

L2w lL 771715
.671764 . mm

45(W$M) lx 677f70 L3tW@2 12443477 LW03bS
.@s3w

Wrp.1)
.Eiw93

14.Ww33 la13z3n
.703fE3 .7WU3

47(rp4) 1s.072101 L42221N 13.m405
. mm

L MIS

4s(./24)
.Ti31e8

1s.79&m 14561571
. 74a3a3

40(./24)
.74!WM

leLEa5571 L497739 15.301873 L497i’%
. 7574%3 .75743a.

!.
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TABLE VII-TABULATED VALUES OF ,THE INTEGRALS a AND @ FOR A RANGE OF ](@–@ Jl-Concluded.

[Computation methodn gfven h 8pp3ndlx G.]

o

I I I Ar-Aa

1(44.)1 # I
AIa

(AS- r~4) &(A4*%~

60(./24)
——

17.m3m7
o.774kT I ~ _

451(+?4) la Oo7m
.791709

52(./24) la 8.9JX
.EOwo

63(7/’34) 19.883125 1.m4816
.825976

64(./24) ‘ m.4’34401
.843110

66(7/24) 2L W211 1.n@a66
.M0245

M(r/24) 221974fd
.m

67(44) n 074s36 1.mm
.W4614

5s(rp4) n. 98W49
.911049

69(+4) 24.smw’3 L 840433
.92s7s4

Oo(rfx) 26.m
. w912

of (./24) 2a 76m94 1.‘xtstm
.-

02(+4) 27.7WW
. W)lW

@3(@4) ‘ia Om940 1.977f07
. W7317

04(r/24) 29.8W57
1.0144M

w./24) 20.7r0717 204fQ44
L 031694

ea(r/24) 31.742311
1.048722

87(+4) 32 TM(E3 2 l14m.5
L05WS

6$(r/24) Rfww
L Us2wa

fxl(./24l 34.’33W6 z lE3123
L lm134 -

70(./’24) UOiw?a
1.117232

7f (./%4) 37.1.57%3 2 ‘mm
L 134403

72(r/24) 3%XmN2
L MN&%

73(./24) w 443ml 2 ml
L l&98@3

74(+4) 40.Sum

76(r/24)
L 18,W3

u nnol 23S%W
LXIT2T42

76(r/24) 43.03M43
1.Zlm7

77(@4) 44.221710 2m
L !H’!U2

78(./24) 4h 4S7923
1.254347

79(./24) #. 71z289 2 S@18
L 271481

&l(r/24) 47.Us37til
L ls?m?l

81(@4) 49.272356 26943.57
1.WJmf /

82(./24) m m’8107

s3(x/24)
LWS36

51.Ww92 2sK@3U
1.34fmo

84(r/24) Q !Mlm
1.357460

a5(r/24) & mlm 2731436
L374m9

80(+4) E&073447
L 3914r4

87(mp4) 67.3$3M1 .27WW4
L 40WU

8s(./%4) a772421
1.42m94

s9(r/24) ea.lft3116 2 w612

wl(r124)
L 44X18

0L04WM
L 4WW

91(r/’24) m. lW 2s37Um
L 47iVM

W4(rm) . 64.s77696
L 404233

93(./’24) WI.072223 Xwwm

94(7/74)
L 5113SI

07.bswJ5
1.62SW

9J(r/24) m. 11’m$ 307412JI
L WM37

90(./24) 7aom’2s
LE82701

97(./24) 72!zu4&3 a.1=
1.57s+07

9S(./24) 7a8m33
L m7042

W(+4) 75.W74M &u
L m4104

1W(W2$) (~ 77. OIIWJ

10. Omm
o.77467r

I&m r. wmm
. 791m

17.0M6%s
.EzEs41

la 4344$% 1.m4816
.&2b075

19.XU401
.843110

m. Iawll L7W.54
.WW44

m. WW’L5
.8772S0

2L841135 L mm
.&34614

227WA9
.911049

a 0472s3 1.S40W
.W.x784

24.57W2
. 94E$12

% mlsw 1.‘wws
.-

28.4W.QI
. Wlw

m. 4WM0 1.977K17
. Wnl?

2a4@557
L 0144EQ

2Q47ilI17 2&
1.031694

m.wslr
L1348722

.31.M7s?s 2114W
L083WS

32 ml%
L 082w9

2s 7C+14M 2 lswn
1.lm134

Ummm
1.lrm

3&9nBa 225M03
L H4403

37.m
1.I’51JS3

38_m3al 2 Wl
L 1CW33

39.3781fr3
1.18SW3

40.fd4ml 2 W3’40
L !Mw3

4L 7ma43
L mlw

42 WQlo 24fmuQ
1.‘z372K4

44.224!222
L M4347

4s.47W.S9 252M8
L 27f481

4&7EJxlm
L ‘2sw+

4&aw855 2594ss7
1.SJWSI

49.344407
1.32%W

am 2W%96
1.34W0

U2W73U2
L W71m

63.3044s3 272J43S
L 374!M

54.738747
L 391414

m lwlor 2m
L 40smo

67.6.w7m
L 4m.w4

a W4416 2 E@343
1.~8

a4072n
L4WW

OLWma7 2m7a52
L 477W3

m.344236
L 484233

0L83WS &m6.wl
, L6113.57

&3.34.m!y
1..5cs@33

87.S7ws3 3.074XWJ
L Sw37

w. 424025
L M2781

70.W780 tlafm -
L 67W7

72 M.88%3
L E3m42

74.148736 3.2rr!wa ,
L 014104

76 m
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TABLE VIII-COMPARISON OF ELBOW DESIGNS OB.TAINED FROM SOLUTIONS BY RELAXATION METHODS AND BY

I

GREEN’S FUNCTION

[Lfnmrti c0mPH31Me tlm PlW5_fkd vebdty dfsMbutfon given In @s. 2 and 22.]

*.O (Inner wall)

SoMfon by rekuntIon
methods (Part r)

*-p (outer wall)
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.m
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.m
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3,17
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–al 37
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–1. 606
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–1. 116
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L 619
1.m
1.7s9
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2S21

:%
2iol
2743
2777
2m

:E
2E35
2s34
2827
2817
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-1. al
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-- g;

–. owl
-.41
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2m
3.mf4
3.lW
& 346
3.492
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3.w
3.W23

H%

:!%
3.778
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